Thank you for purchasing LS Variable Frequency Drives!

SAFETY INSTRUCTIONS

To prevent injury and property damage, follow these instructions during the installation and operation of the inverter.

Incorrect operation due to ignoring these instructions may cause harm or damage. The following symbols are used throughout the manual to highlight important information.

DANGER
This symbol indicates death or serious injury can occur if you do not follow instructions.

WARNING

This symbol indicates the possibility of damage to the inverter or other components.

■ The meaning of each symbol in this manual and on your equipment is as follows.

This is the safety alert symbol.
Read and follow instructions carefully to avoid a dangerous situation.
This symbol alerts the user to the presence of "dangerous voltage" inside the product that might cause bodily harm or electric shock.

- This manual should be placed in a location where it can be accessed by users.
- This manual should be given to the person who actually uses the inverter and is responsible for its maintenance.

WARNING

- Do not remove the cover while power is applied or the unit is in operation. Otherwise, electric shock could occur.
- Do not operate the inverter with the front cover removed.

Otherwise, electric shock can occur due to the exposed terminals and bus bars.

- Do not remove the cover except for periodic inspections or wiring, even if the input power is not applied.
Otherwise, electric shock can occur due to accessing capacitor banks.
- Wiring and periodic inspections should be performed at least 10 minutes after disconnecting the input power and after checking the DC link voltage is discharged with a meter (below 30VDC).
Otherwise, electric shock could occur.
- Operate the switches with dry hands.

Otherwise, electric shock could occur.

- Do not use the cable when its insulating tube is damaged.

Otherwise, electric shock could occur.

- Do not subject the cables to scratches, excessive stress, heavy loads or pinching.
Otherwise, electric shock could occur.

CAUTION

- Install the inverter on a non-flammable surface. Do not place flammable materials nearby.
Otherwise, fire could occur.
- Disconnect the input power if the inverter has been damaged. Otherwise, it could result in a secondary accident and fire.
- Do not touch the inverter after shutting down or disconnecting it. It will remain hot for a couple of minutes.
Otherwise, bodily injuries such as skin-burn or damage could occur.
- Do not apply power to a damaged inverter or to an inverter with parts missing even if the installation is complete.
Otherwise, electric shock could occur.
- Do not allow lint, paper, wood chips, dust, metallic chips or other foreign material into the drive.
Otherwise, fire or accident could occur.
- Equipment is intended for installation in closed electrical operating areas only
- On User's Manual it shall be made clear that maintenance adjustments should be made by qualified personnel.

OPERATING PRECAUTIONS

(1) Handling and installation

- The iP5A series inverter can be heavy. Lift according to the weight of the product. Use a hoist or crane to move and install the iP5A series inverter if necessary. Failure to do so may result in personal injury or damage to the inverter.
- Do not stack the inverter boxes higher than the number recommended.
- Install the inverter according to instructions specified in this manual.
- Do not open the cover during delivery.
- Do not place heavy items on the inverter.
- Check that the inverter mounting orientation is correct.
- Do not drop the inverter, or subject it to hard impact.
- Verify the ground impedance 100 ohm or less for 230 V Class inverters and 10 ohm or less for 460 V class inverters.
- Take protective measures against ESD (Electrostatic Discharge) before touching the pcb boards during inspection, installation or repair.
- The inverter is designed for use under the following environmental conditions :

	Ambient temp.	$-10 \sim 50{ }^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F} \sim 122^{\circ} \mathrm{F}\right)$ Decrease 2% of rated current for every $1^{\circ} \mathrm{C}$ increase in above $40^{\circ} \mathrm{C}$.
	Relative humidity	90\% Relative Humidity or less (non-condensing)
	Storage temp.	$-20 \sim 65{ }^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F} \sim 149^{\circ} \mathrm{F}\right)$
	Location	Protected from corrosive gas, combustible gas, oil mist or dust (Pollution degree 2 environment)
	Altitude, Vibration	Max. 1,000m ($3,300 \mathrm{ft}$) above sea level, Max. $5.9 \mathrm{~m} / \mathrm{sec}^{2}(0.6 \mathrm{G})$ or less
	Atmospheric pressure	$70 \sim 106 \mathrm{kPa}(20.67$ in $\mathrm{Hg} \sim 31.3$ in Hg)

(2) Wiring

- Do not connect power factor correction capacitors, surge suppressors, or RFI filter to the output of the inverter.
- The connection orientation of the motor output cables $\mathrm{U}, \mathrm{V}, \mathrm{W}$ will affect the direction of rotation of the motor. Verify correct wiring before starting inverter.
- Incorrect terminal wiring could result in inverter and/or equipment damage.
- Reversing the polarity ($+/$-) of the terminals could damage the inverter.
- Only authorized personnel familiar with LS inverter should perform wiring and
inspections.
- Always install the inverter before wiring. Otherwise, electric shock or bodily injury can occur.
- Wire insulation recommended for main power circuits.(Refer to Appendix A)

(3) Trial run

- Check all parameters during operation. Parameter values might require adjustment depending on the application.
- Always apply voltage within the permissible range of each terminal as indicated in this manual. Otherwise, inverter damage may result.
- Current hunting can be occurred in the low speed territory during testing. It occurs where the capacity is above 110 kW with no-load and the axis is not connected. The currnet hunting have a gap according to the motor characteristic. It will be disappeared when the load is connected and it is not the indication of abnormal condition. If the hunting is occurred seriously, please stop the testing and operates with the load.

(4) Operation precautions

- When the Auto restart function is selected, the inverter will restart after a fault has occurred.
- The Stop key on the keypad can only be used to stop the inverter when keypad control is enabled. Install a separate emergency stop switch if necessary.
- If a fault reset is made with the run command and /or reference signal present, a sudden start will occur. Check that the run command and /or reference signal is turned off in advance of resetting any faults. Otherwise an accident could occur.
- Do not modify the inverter.
- Depending on the motor specifications and user ETH overload settings, the motor may not be protected by electronic thermal function of inverter.
- The operation of the inverter is intended to be controlled by either keypad command or control input signals. Do not use a magnetic contactor or any other device that routinely disconnects the inverter and reconnects the inverter to the input supply power for the purpose of starting and stopping the motor.
- A noise filter may be installed to reduce the effect of electromagnetic interference. Otherwise nearby electronic equipment may be affected.
- In cases with input voltage unbalances, install an AC input reactor.
- Power Factor capacitors and generators may become overheated and damaged due to harmonics created by the inverter.
- Use an insulation-rectified motor or take measures to suppress the micro surge voltage when driving 460 V class motor with inverter. A micro surge voltage attributable to wiring constant is generated at motor terminals, and may deteriorate insulation and damage motor.
- Before operating unit and prior to user programming, reset user parameters to default settings.
- The Inverter can be set to operate a motor at high-speeds. Verify the speed capability of motor and machinery prior to operating inverter.
- Holding torque is not produced when using the DC-Brake function. Install separate equipment when holding torque is required.
(5) Fault prevention precautions
- If required, provide a safety backup such as an emergency mechanical brake to prevent any hazardous conditions if the inverter fails during operation.
(6) Maintenance, inspection and parts replacement
- Do not megger (hi-pot or insulation resistance) test the power or control circuit of the inverter.
- Refer to 'Chapter 6 Troubleshooting and Maintenance’ and parts replacement details.

(7) Disposal

- Handle the inverter as an industrial waste when disposing of it.
(8) General instructions

Many of the diagrams and drawings in this instruction manual show the inverter without a cover. Prior to operating the unit, be sure to restore covers and circuit protection according to specifications.

(9) Protective requirements

The accessible connections and parts listed below are of protective class 0 , it means that the protection of these circuits relies only upon basic insulation and becomes hazardous in the event of a failure of the basic insulation. Therefore, devices connected to these circuits must provide electrical-shock protection as if the device was connected to supply mains voltage. In addition, during installation these parts must be considered, in relation with electrical-shock, as supply mains voltage circuits.

This applies to the following circuits :
STARTING CONTACT FUNCTION SELECT
\rightarrow M1,M2,M3, FX [M7], RX [M8], JOG [M6], BX [M5], RST [M4], CM, 24
ANALOG FREQUENCY SETTING
$\rightarrow \mathrm{V}+\mathrm{V}$-, I, A0, B0, 5G ($\sim 30 \mathrm{~kW}$), CM(37kW~)
EXTERNAL MOTOR THERMAL DETECTION
\rightarrow NT ($\sim 30 \mathrm{~kW}$), ET ($37 \mathrm{kw} \sim$), 5 G
BUILT-IN RS485 TERMINAL
$\rightarrow \mathrm{C}+\mathrm{C}-, \mathrm{CM}$
ANALOG OUTPUT
\rightarrow S0, S1, 5G
CONTACT
$\rightarrow 3 A, 3 C, 3 B$, "A1~4, C1~4"
CONSOLE PORT
FAN CIRCUITS

Table of Contents

CHAPTER 1 - BASIC INFORMATION 1-1
1.1 INSPECTION. 1-1
1.2 BASIC CONFIGURATION. 1-2
CHAPTER 2 - SPECIFICATION 2-1
2.1 200~230V CLASS ($0.75 \sim 30 \mathrm{KW} / 1 \sim 40 \mathrm{HP}$) 2-1
2.2 380~480V CLASS ($0.75 \sim 30 \mathrm{KW} / 1 \sim 40 \mathrm{HP}$) 2-1
2.3380 ~ 480V CLASS (37~90KW / 50~125HP). 2-2
$2.4380 \sim 480 \mathrm{~V}$ CLASS (110~450KW / 150~600HP) 2-2
2.5 DIMENSIONS 2-5
CHAPTER 3 - INSTALLATION 3-1
3.1 INSTALLATION PRECAUTIONS 3-1
3.2 WIRING 3-4
CHAPTER 4 - OPERATION 4-1
4.1 Programming Keypads 4-1
4.2 OpERATING EXAMPLE 4-7
4.3 VARIOUS FUNCTION SETTING AND DESCRIPTION 4-12
4.4 Operation Example 4-18
CHAPTER 5 - PARAMETER LIST 5-1
5.1 PARAMETER GROUPS 5-1
5.2 PARAMETER LIST. 5-2
CHAPTER 6 - TROUBLESHOOTING AND MAINTENANCE 6-1
6.1 FAULT DISPLAY 6-1
6.2 TROUBLESHOOTING 6-7
6.3 HOW TO CHECK POWER COMPONENTS 6-8
6.4 MAINTENANCE 6-10
CHAPTER 7 - OPTIONS 7-1
CHAPTER 8 - RS485 COMMUNICATION 8-1
8.1 INTRODUCTION 8-1
8.2 SPECIFICATION 8-2
8.3 OPERATION 8-3
8.4 COMMUNICATION PROTOCOL (RS485) 8-4
8.5 PARAMETER CODE LIST 8-8
8.6 Troubleshooting 8-13
8.7 ASCII CODE LIST 8-15
CHAPTER 9 - APPLYING DRIVES TO SINGLE-PHASE INPUT APPLICATION 9-1
9.1 INTRODUCTION 9-1
9.2 Power(HP), InPuT Current and Output Current 9-2
9.3 InPut Frequency and Voltage Tolerance 9- 2
9.4 WIring and Peripheral Device 9-2
Γ9-4
APPENDIX A- UL MARKING
APPENDIX B- PERIPHERAL DEVICES VII
APPENDIX C- RELATED PARAMETERS IX
EMI / RFI POWER LINE FILTERS nearnoerceman XI

Read and understand this manual before installing, operating or servicing this inverter. The inverter must be installed according to this manual.
The following conventions are used to indicate safety messages in this manual Failure to heed these messages could result in serious or possibly even fatal injury or damage to the products or to related equipment and systems.

CHAPTER 1 - BASIC INFORMATION

1.1 Inspection

- Remove the inverter from its packing and inspect its exterior for shipping damage. If damage is apparent notify the shipping agent and your LSIS sales representative.
- Remove the cover and inspect the inverter for any apparent damage or foreign objects. Ensure that all mounting hardware and terminal connection hardware is properly seated, securely fastened, and undamaged.
- Check the nameplate on the iP5A inverter. Verify that the inverter unit is the correct horsepower and input voltage for the application.
- Inverter control is applied for AC asynchronous (Induction Motor) Synchronous motor is excluded.

1.1.1 Inverter model number

The numbering system of the inverter is as shown below.

* UL Open type : UL Open type product must be mounted on the panel in a house.
* UL Enclosed type 1 : UL Enclosed type1 product can be mounted without the panel in a house.

1.1.2 Installation

To operate the inverter reliably, install the inverter in a proper place with the correct direction and with the proper clearances.

1.1.3 Wiring

Connect the power supply, motor and operation signals (control signals) to the terminal block. Note that incorrect connection may damage the inverter and peripheral devices.

1.2 Basic configuration

The following devices are required to operate the inverter. Proper peripheral devices must be selected and correct connections made to ensure proper operation. An incorrectly applied or installed inverter can result in system malfunction or reduction in product life as well as component damage. You must read and understand this manual thoroughly before proceeding.
Use a power source with a voltage within
the permissible range of inverter input
power rating.

CHAPTER 2 - SPECIFICATION

2.1 200~230V Class (0.75~30kW /1~40HP)

Model Number (SVxxxiP5A-2)				008	015	022	037	055	075	110	150	185	220	300
Capacity [kVA] ${ }^{(1)}$				1.9	3.0	4.6	6.1	9.1	12.2	17.5	22.9	28.2	33.5	43.8
Output ratings	Fan or pump load	Motor rating ${ }^{(2)}$	HP	1	2	3	5	7.5	10	15	20	25	30	40
			kW	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30
		Current [A] (110\% overload)		5	8	12	16	24	32	46	60	74	88	115
				110\% 1Minute (Normal Duty)										
	General load	Motor rating ${ }^{(2)}$	HP	0.5	1	2	3	5	7.5	10	15	20	25	30
			kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
		Current [A] (150\% overload)		2.5	5	8	12	17	23	33	44	54	68	84
				150\% 1 Minute (Heavy Duty)										
	Frequency			$0.01 \sim 120 \mathrm{~Hz}$										
	Voltage			$200 \sim 230 \mathrm{~V}^{(3)}$										
Input ratings	Voltage			$3 \phi 200 \sim 230 \mathrm{~V}$ (-15\% ~ + 10 \%)										
	Frequency			$50 / 60 \mathrm{~Hz}(\pm 5 \%)$										
Protection degree				IP20 / UL Type1							IP00 / UL Open ${ }^{(3)}$			
Weight [kg (lbs.)]				$\begin{array}{\|c\|} \hline 4.1 \\ (9.0) \end{array}$	$\begin{array}{\|l\|} \hline 4.2 \\ \hline(9.3) \end{array}$	$\begin{aligned} & \hline 4.2 \\ & \hline(9.3) \end{aligned}$	$\begin{gathered} 4.9 \\ (10.8) \end{gathered}$	$\begin{aligned} & 4.9 \\ & (10.8) \end{aligned}$	$\left\|\begin{array}{c} 6 \\ (13.2) \end{array}\right\|$	$\left\lvert\, \begin{gathered} 6 \\ (13.2) \end{gathered}\right.$	$\begin{array}{\|c\|} \hline 13 \\ (28.7) \\ \hline \end{array}$	$\begin{gathered} 13.5 \\ (29.8) \end{gathered}$	$\begin{gathered} 20 \\ (44.1) \end{gathered}$	$\begin{gathered} 20 \\ (44.1) \end{gathered}$

2.2 380~480V Class (0.75~30kW / 1~40HP)

Model Number (SVxxxiP5A-4)				008	015	022	037	055	075	110	150	185	220	300
Capacity [kVA] ${ }^{(1)}$				2.0	3.2	4.8	6.4	9.6	12.7	19.1	23.9	31.1	35.9	48.6
Output ratings	Fan or pump load	Motor rating ${ }^{(2)}$	HP	1	2	3	5	7.5	10	15	20	25	30	40
			kW	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30
		Current [A](110\% overload)		2.5	4	6	8	12	16	24	30	39	45	61
				110\% 1Minute (Normal Duty)										
	Genera load	Motor rating ${ }^{(2)}$	HP	0.5	1	2	3	5.5	7.5	10	15	20	25	30
			kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22
		Current [A]/Built-in DCL Type$(150 \%$ overload)		1.25	2.5	4	6	8.8	12	16	22/24	28/30	34/39	44/45
				150\% 1 Minute (Heavy Duty)										
	Frequency			$0.01 \sim 120 \mathrm{~Hz}$										
	Voltage			$380 \sim 480 \mathrm{~V}^{(3)}$										
Input ratings	Voltage			$3 \phi 380 \sim 480 \mathrm{~V}$ (-15\% ~ +10 \%)										
	Frequency			$50 / 60 \mathrm{~Hz}(\pm 5 \%)$										
Protection degree				IP20 / UL Type1							IP00 / UL Open ${ }^{(3)}$			
Weight [kg (lbs.)]		Standard Type		$\begin{array}{\|c\|} \hline 4.1 \\ (9.04) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 4.2 \\ (9.26) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 4.2 \\ (9.26) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 4.9 \\ (10.8) \\ \hline \end{array}$	$\begin{array}{\|c} \hline 4.9 \\ (10.8) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ (13.2) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 6 \\ (13.2) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12.5 \\ (27.6) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 13 \\ (28.7) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 20 \\ (44.1) \\ \hline \end{array}$	$\begin{gathered} 20 \\ (44.1) \end{gathered}$
		Built-in DCL Type		-	-	-	-	-	-	-	$\begin{array}{\|c\|} \hline 19.5 \\ (42.9) \\ \hline \end{array}$	$\begin{aligned} & 19.5 \\ & (42.9) \end{aligned}$	$\begin{array}{\|l\|} \hline 26.5 \\ (58.3) \end{array}$	$\begin{aligned} & 26.5 \\ & (58.3) \end{aligned}$

Chapter 2 - Specification

2.3380 ~ 480V Class (37~90kW / 50~125HP)

Model Number(SVxxxiP5A-4)				370	450	550	750	900
Capacity [kVA] ${ }^{(1)}$				59.8	72.5	87.6	121.1	145.8
Output ratings	Fan or pump load	motor rating ${ }^{(2)}$	HP	50	60	75	100	125
			kW	37	45	55	75	90
		Current [A] (110\% overload)		75	91	110	152	183
				110\% 1 Minute (Normal Duty)				
	Genera I load	motor rating ${ }^{(2)}$	HP	40	50	60	75	100
			kW	30	37	45	55	75
		Current [A] (150\% overload)		61	75	91	110	152
				150\% 1 Minute (Heavy Duty)				
	Frequency			$0.01 \sim 120 \mathrm{~Hz}$				
	Voltage			$380 \sim 480 \mathrm{~V}^{(3)}$				
Input ratings	Voltage			$3 \phi 380 \sim 480 \mathrm{~V}$ (-15\% ~ + 10 \%)				
	Frequency			$50 / 60 \mathrm{~Hz}(\pm 5 \%)$				
Protection degree				IP00 / UL Open(3)				
$\begin{gathered} \text { Weight [kg } \\ \text { (lbs.)] } \end{gathered}$		Standard Type		27(59.5)	27(59.5)	29(64)	42(92.6)	43(94.8)
		Built-in DCL Type		39(86)	40(88.2)	42(92.6)	67(147.4)	68(149.9)

2.4380 ~ 480V Class (110~450kW / 150~600HP)

Model Number(SVxxxiP5A-4)				1100	1320	1600	2200	2800	3150	3750	4500
Capacity [kVA] ${ }^{(1)}$				178	210	259	344	436	488	582	699
Output ratings	Fan or pump load	Motor rating ${ }^{(2)}$	HP	150	200	250	300	350	400	500	600
			kW	110	132	160	220	280	315	375	450
		Current [A](110\% overload)		223	264	325	432	547	613	731	877
				110\% 1 Minute (Normal Duty)							
	Genera I load	Motor rating ${ }^{(2)}$	HP	125	150	200	250	300	350	400	500
			kW	90	110	132	160	220	280	315	375
		Current [A](150\% overload)		183	223	264	325	432	547	613	731
				150\% 1 Minute (Heavy Duty)							
	Frequency			$0.01 \sim 120 \mathrm{~Hz}$							
	Voltage			$380 \sim 480 \mathrm{~V}^{(3)}$							
Input ratings	Voltage			$3 \phi 380 \sim 480 \mathrm{~V}(15 \% \sim+10 \%)$							
	Frequency			$50 / 60 \mathrm{~Hz}$ (± 5 \%)							
Protection degree				IP00 / UL Open ${ }^{(4)}$							
DCL (DC Choke)				Built-in					External Option		

Chapter 2 - Specification

Weight $[\mathrm{kg}$ (lbs.)]	101 (222.7)	101 (222.7)	114	200	200	243	380	380
(251.3)	(441.9)	(441.9)	(535.7)	(837.7)	(837.7)			

Common Specifications

Cooling method			Forced air cooling (Self-cooling for below 1.5kW-2, 1.5kW-4)
Short Circuit Rating			65 KA , suitable for use on a circuit capable of delivering not more than 100,000 RMS Symmetrical amperes, 240 (or 480V) volts maximum
Agency Approvals			UL and CUL listed, CE marked
$\frac{0}{0}$		Control Method	V/F, Sensorless Vector, Slip Compensation, Easy Start Selectable
		Frequency Setting Resolution	Digital Reference: 0.01 Hz (Below 100 Hz), 0.1 Hz (Over 100 Hz) Analog Reference: $0.01 \mathrm{~Hz} / 60 \mathrm{~Hz}$
	Frequency Accuracy		Digital: 0.01% of Max. Output Frequency Analog: 0.1% of Max. Output Frequency
		V/F Ratio	Linear, Squared Pattern, User V/F
		Overload Capacity	110% per 1 min, 120\% per 1 min ${ }^{(5)}$
		Torque Boost	Manual Torque Boost (0 ~ 15% settable), Auto Torque Boost
		Operation Method	Keypad / Terminal / Communication Operation
		Frequency Setting	Analog: 0 ~ 12V /-12V ~ 12V / 4 ~ 20mA or 0~20mA/Pulse / Ext-PID Digital: Keypad
		Start Signal	Forward, Reverse
		Multi-Step	Up to 18 Speeds can be set including Jog (Use Programmable Digital Input Terminal,Including Jog/Dwell)
		Multi Step Accel/Decel Time	$0.1 \sim 6,000 \mathrm{sec}$, Max 4 types can be set via Multi- Function Terminal. Accel/Decel Pattern: Linear, U-Curve, S-Curve Selectable
		Emergency Stop	Interrupts the Output of Inverter
		Jog	Jog Operation
		Fault Reset	Trip Status is Reset when Protection Function is Active.
		Operating Status	Frequency Detection Level, Overload Alarm, Stalling, Over Voltage, Low Voltage, Inverter Overheating/ Running/ Stopping/ Constant running, Inverter By-Pass, Speed Searching
		Fault Output	Contact Output (3A, 3C, 3B) - AC 250V 1A, DC 30V 1A
		Indicator	Choose 2 from Output Frequency, Output Current, Output Voltage, DC Link Voltage (Output Voltage: $0 \sim 10 \mathrm{~V}$)
	Operation Function		DC Braking, Frequency Limit, Frequency Jump, $2^{\text {nd }}$ Function, Slip Compensation, Reverse Rotation Prevention, Auto Restart, Inverter ByPass, Auto-Tuning, PID Control, Flying Start, Safety Stop, Flux Braking, Low leakage, Pre-PID, Dual-PID, MMC, Easy Start, Pre-heater

	Inverter Trip	Over Voltage, Low Voltage, Over Current, Ground Fault, Inverter Overheat, Motor Overheat, Output Phase Open, Overload Protecion, External Fault 1, 2, Communication Error, Loss of Speed Command, Hardware Fault, Option Fault, etc.
	Inverter Alarm	Stall Prevention, Overload Alarm, Thermal Sensor Fault
$\begin{gathered} \underset{y}{c} \\ \frac{1}{0} \\ \frac{0}{0} \end{gathered}$	Operation 응 Information	Output Frequency, Output Current, Output Voltage, Frequency Set Value, Operating Speed, DC Voltage, Integrating Wattmeter, Fan ON time, Runtime, Last Trip Time
	$\xrightarrow{\text { Trip Information }}$	Trips Indication when the Protection Function activates. Max. 5 Faults are saved. Last Trip Time.
	Ambient Temperature	$-10^{\circ} \mathrm{C} \sim 50^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F} \sim 104^{\circ} \mathrm{F}\right)$ (Use loads less than 80% a
	Storage Temperature	$-20^{\circ} \mathrm{C} \sim 65^{\circ} \mathrm{C}\left(14^{\circ} \mathrm{F} \sim 149^{\circ} \mathrm{F}\right)$
	Ambient Humidity	Less Than 90% RH Max. (Non-Condensing)
	Altitude - Vibration	Below $1,000 \mathrm{~m}\left(3,300 \mathrm{tt}\right.$), Below $5.9 \mathrm{~m} / \mathrm{sec}^{2}(0.6 \mathrm{~g})$
	Application Site	Pollution degree 2, No Corrosive Gas, Combustible Gas, Oil Mist, or Dust

(1) Rated capacity $(\sqrt{ } 3 \times \mathrm{V} \times \mathrm{I})$ is based on 220 V for 200 V class and 460 V for 400 V class.
(2) Indicates the maximum applicable capacity when using a 4-Pole standard motor.
(3) IP20 or UL Enclosed Type1 can be provided by the option.
(4) IP20 or UL Enclosed Type1 is not provided.
(5) Overload rating $120 \%, 1 \mathrm{~min}$ is based on ambient $25^{\circ} \mathrm{C}$.

2.5 Dimensions

1) SV008~055iP5A (200/400V Class)

mm (inches)										
Model	W1	W2	H1	H2	H3	A	B	D1	Enclosure Type	
SV008	150	130	284	269	7.5	6	6	156.5	IP20	
~ 055 iP5A-2/4	(5.91)	(5.12)	(11.18)	(10.69)	(0.29)	(0.23)	(0.23)	(6.16)	UL Type 1	

2) SV075~300iP5A (200/400V Class)

mm (inches)

Model	W1	W2	H1	H2	H3	D1	A	B	Enclosure Type
SV075iP5A-2/4	200	180	284	269	7.5	182	6	6	IP20
	(7.87)	(7.09)	(11.18)	(10.69)	(0.29)	(7.16)	(0.23)	(0.23)	UL Type 1
SV110iP5A-2/4	200	180	284	269	7.5	182	6	6	IP20
	(7.87)	(7.09)	(11.18)	(10.69)	(0.29)	(7.16)	(0.23)	(0.23)	UL Type 1
SV150iP5A-2/4	250	230	385	370	7.5	201	9	9	IP00
	(9.84)	(9.06)	(15.16)	(14.57)	(0.29)	(7.91)	(0.35)	(0.35)	UL Open
SV185iP5A-2/4	250	230	385	370	7.5	201	9	9	IP00
	(9.84)	(9.06)	(15.16)	(14.57)	(0.29)	(7.91)	(0.35)	(0.35)	UL Open
SV220iP5A-2/4	304	284	460	445	7.5	234	9	9	IP00
	(11.97)	(11.18)	(18.11)	(17.52)	(0.29)	(9.21)	(0.35)	(0.35)	UL Open
SV300iP5A-2/4	304	284	460	445	7.5	234	9	9	IP00
	(11.97)	(11.18)	(18.11)	(17.52)	(0.29)	(9.21)	(0.35)	(0.35)	UL Open

3) SV150~300iP5A (UL Type 1 or UL Open Type with Conduit Option used, 200V/400V Class)

mm (inches)

Model	W1	W2	H1	H2	H3	D1	A	B	Enclosure Type
SV150iP5A-2/4	250	230	451.1	370	7.5	201	9	9 (9.84)	(9.06)
(17.75)	(14.57)	(0.29)	(7.91)	(0.35)	(0.35)	UL Type 1			

Note) Mounting NEMA 1 conduit option to the $15 \sim 90 \mathrm{Kw}(20 \sim 125 \mathrm{HP})$ Open Type meets NEMA 1 but does not comply with UL Enclosed Type 1. To that end, please purchase UL Type 1 product.

4) SV150 ~ SV300 iP5A (400V Class) - Built-in DCL Type

model (inches)									
Mod	W1	W2	H1	H2	H3	D1	A	B	Enclosur e Type
SV150, 185 iP5A-4L (Built-in DCL)	250 (9.84)	186 (7.32)	403.5 (15.88)	392 (15.43)	6.5 (0.25)	261.2 (10.28)	7 (0.27)	7 (0.27)	IP00 UL Type 1
SV220, 300 iP5A-4L (Built-in DCL)	260 (10.23)	220 (8.66)	480 (18.89)	468.5 (18.44)	6.5 (0.25)	268.6 (10.57)	7 (0.27)	7 (0.27)	IP20 UL Type 1

5) SV150 ~ SV300 iP5A (Built-in DCL Type, UL Type 1 or UL Open Type with Conduit Option used, 400V Class)

mm (inches)

Model	W1	W2	H1	H2	H3	D1	A	B	Enclosure Type
SV150, 185iP5A-4L	250	186	475.5	392	6.5	261.2	7	7	IP20
(Built-in DCL Type)	(9.84)	(7.32)	(18.72)	(15.43)	(0.25)	(10.28)	(0.27)	(0.27)	UL Type 1
SV220, 300iP5A-4L (Built-in DCL Type)	260 (10.23)	220	552	468.5	6.5	268.6	7	7	IP20
(21.73)	(18.44)	(0.25)	(10.57)	(0.27)	(0.27)	UL Type 1			

6) SV370 ~ SV550iP5A (400V Class)

Model	W1	W2	H1	H2	H3	D1	A	B	Enclosure Type
$\begin{aligned} & \text { SV370, } 450 \\ & \text { iP5A-4 } \end{aligned}$	$\begin{array}{\|c\|} \hline 300 \\ (11.81) \\ \hline \end{array}$	$\begin{gathered} 190 \\ (7.48) \end{gathered}$	$\begin{array}{c\|} \hline 534 \\ (21.02) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 515 \\ (20.28) \\ \hline \end{array}$	$\begin{gathered} 11 \\ (0.43) \end{gathered}$	$\begin{array}{\|c\|} \hline 265.6 \\ (10.46) \\ \hline \end{array}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 9 \\ (0.35) \end{gathered}$	$\begin{gathered} \text { IPOO } \\ \text { UL Open } \end{gathered}$
SV550iP5A-4	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 190 \\ (7.48) \end{gathered}$	$\begin{gathered} 534 \\ (21.02) \end{gathered}$	$\begin{gathered} 515 \\ (20.28) \end{gathered}$	$\begin{gathered} 11 \\ (0.43) \end{gathered}$	$\begin{gathered} \hline 292.6 \\ \text { (11.52) } \\ \hline \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 9 \\ (0.35) \end{gathered}$	$\begin{gathered} \text { IP00 } \\ \text { UL Open } \end{gathered}$
SV370, 450 iP5A-4L (Built-in DCL)	$\begin{array}{\|c\|} 300 \\ (11.81) \end{array}$	$\begin{gathered} 190 \\ (7.48) \end{gathered}$	$\begin{gathered} 684 \\ (26.92) \end{gathered}$	$\begin{gathered} 665 \\ (26.18) \end{gathered}$	$\begin{gathered} 11 \\ (0.43) \end{gathered}$	$\begin{gathered} 265.6 \\ (10.46) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 9 \\ (0.35) \end{gathered}$	$\begin{gathered} \text { IP00 } \\ \text { UL Open } \end{gathered}$
$\begin{gathered} \text { SV550 } \\ \text { iP5A-4L } \\ \text { (Built-in DCL) } \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 190 \\ (7.48) \end{gathered}$	$\begin{gathered} 684 \\ (26.92) \end{gathered}$	$\begin{array}{c\|} 665 \\ (26.18) \end{array}$	$\begin{gathered} 11 \\ (0.43) \end{gathered}$	$\begin{gathered} 292.6 \\ (11.52) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 9 \\ (0.35) \end{gathered}$	$\begin{gathered} \text { IP00 } \\ \text { UL Open } \end{gathered}$

7) SV370~550iP5A (UL Type 1 or UL Open Type with Conduit Option Used, 400V Class)

Model	W1	W2	H1	H2	H3	D1	A	B	Enclosure Type
$\begin{gathered} \text { SV370, } 450 \\ \text { iP5A-4 } \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 190 \\ (7.48) \end{gathered}$	$\begin{gathered} 642 \\ (25.28) \end{gathered}$	$\begin{gathered} 515 \\ (20.28) \\ \hline \end{gathered}$	$\begin{gathered} 11 \\ (0.43) \end{gathered}$	$\begin{gathered} 265.6 \\ (10.46) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 9 \\ (0.35) \end{gathered}$	IP20 UL Type 1
SV550iP5A-4	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 190 \\ (7.48) \end{gathered}$	$\begin{gathered} 642 \\ (25.28) \\ \hline \end{gathered}$	$\begin{gathered} 515 \\ (20.28) \end{gathered}$	$\begin{gathered} 11 \\ (0.43) \end{gathered}$	$\begin{gathered} 292.6 \\ (11.52) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 9 \\ (0.35) \end{gathered}$	IP20 UL Type 1
$\begin{gathered} \text { SV370, } 450 \\ \text { iP5A-4L } \\ \text { (Built-in DCL) } \end{gathered}$	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 190 \\ (7.48) \end{gathered}$	$\begin{gathered} 792 \\ (31.18) \end{gathered}$	$\begin{gathered} 665 \\ (26.18) \end{gathered}$	$\begin{gathered} 11 \\ (0.43) \end{gathered}$	$\begin{gathered} 265.6 \\ (10.46) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \end{gathered}$	$\begin{gathered} 9 \\ (0.35) \end{gathered}$	IP20 UL Type 1
SV550iP5A-4L (Built-in DCL)	$\begin{gathered} 300 \\ (11.81) \end{gathered}$	$\begin{gathered} 190 \\ (7.48) \end{gathered}$	$\begin{gathered} 792 \\ (31.18) \end{gathered}$	$\begin{gathered} 665 \\ (26.18) \end{gathered}$	$\begin{gathered} 11 \\ (0.43) \end{gathered}$	$\begin{gathered} \hline 292.6 \\ (11.52) \end{gathered}$	$\begin{gathered} 10 \\ (0.39) \\ \hline \end{gathered}$	$\begin{gathered} 9 \\ (0.35) \\ \hline \end{gathered}$	IP20 UL Type 1

Note) Mounting NEMA 1 conduit option to the $15 \sim 90 \mathrm{Kw}(20 \sim 125 \mathrm{HP})$ Open Type meets NEMA 1 but does not comply with UL Enclosed Type 1. To that end, please purchase UL Type 1 product.

8) SV750, 900iP5A (400V Class)

mm (inches)

Model	W1	W2	H1	H2	H3	D1	A	B	Enclosure Type
SV750, 900iP5A-4	370 (14.57)	220 (8.66)	610 (24.02)	586.5 (23.09)	15.5 (0.61)	337.6 (13.29)	10 (0.39)	9 (0.35)	UP00 UL Open
SV750, 900iP5A-4L (Built-in DCL)	370 (14.57)	220 (8.66)	760 (29.92)	736.6 (28.99)	15.5	337.6 (0.61)	10 (13.29) (0.39)	9 (0.35)	UP00 UL Open

9) SV750, 900iP5A (UL Type 1 or UL Open Type with Conduit Option used, 400V Class)

mm (inches)

Model	W1	W2	H1	H2	H3	D1	A	B	Enclosure Type
SV750,900iP5A-4	370 (14.57)	220 (8.66)	767.5 (30.22)	586.5 (23.09)	15.5 (0.61)	337.6 (13.29)	10 (0.39)	9 (0.35)	IP20 UL Type 1
SV750, 900iP5A-4L (Built-in DCL)	370 (14.57)	220 (8.66)	917.5 (36.12)	736.5 (28.99)	15.5	337.6	10	9	IP20
(0.61)	(13.29)	(0.39)	(0.35)	UL Type 1					

Note) Mounting NEMA 1 conduit option to the 15~90Kw(20~125HP) Open Type meets NEMA 1 but does not comply with UL Enclosed Type 1. To that end, please purchase UL Type 1 product.

10) SV1100, 1600iP5A (400V Class)

mm(inches)

Model	W1	W2	W3	H1	H2	H3	D1	A	B	Enclosure Type
SV1100,	510	381								
1320iP5A-4L	(20.08)	11	783.5	759	15.5	422.6	11	11	IP00	
(15.00)	(0.43)	(30.85)	(29.88)	(0.61)	(16.64)	(0.43)	(0.43)	UL Open		

11) SV2200, 2800iP5A (400V Class)

mm (inches)

Model	W1	W2	W3	H1	H2	H3	D1	A	B	Enclosure Type
SV2200, 2800 iP5A-4L	690 (27.17)	581 (22.87)	14 (0.55)	1063 (41.85)	1043.5 (41.08)	25.5 (1.00)	449.6 (17.70)	14 (0.55)	14 (0.55)	IP00 UL Open

12) SV3150, 4500iP5A (400V Class)

mm (inches)

Model	W1	W2	H1	H2	H3	A	B	D1	Enclosure Type
SV3150iP5A-4	772	500	1140.5	1110	15	13	13	442	IP00
(30.39)	(19.69)	(44.90)	(43.70)	(0.59)	(0.51)	(0.51)	(17.40)	UL Open	
SV3750,	922	580	1302.5	1271.5	15.5	14	14	495	IP00
4500iP5A-4	(36.30)	(22.83)	(51.28)	(50.06)	(0.61)	(0.55)	(0.55)	(19.49)	UL Open

CHAPTER 3 - INSTALLATION

3.1 Installation precautions

1) Handle the inverter with care to prevent damage to the plastic components. Do not hold the inverter by the front cover.
2) Do not mount the inverter in a location where excessive vibration $\left(5.9 \mathrm{~m} / \mathrm{sec}^{2}\right.$ or less) is present such as installing the inverter on a press or other moving equipment.
3) Install in a location where temperature is within the permissible range ($10 \sim 40^{\circ} \mathrm{C}$).

4) The inverter will be very hot during operation. Install it on a non-combustible surface.
5) Mount the inverter on a flat, vertical and level surface. Inverter orientation must be vertical (top up) for proper heat dissipation. Also leave sufficient clearances around the inverter. However, $A=$ Over 500 mm and $B=200 \mathrm{~mm}$ should be obtained for inverters rated 30 kW and above.

6) Do not mount the inverter in direct sunlight or near other heat sources.
7) The inverter shall be mounted in a Pollution Degree 2 environment. If the inverter is going to be installed in an environment with a high probability of dust, metallic particles, mists, corrosive gases, or other contaminates, the inverter must be located inside the appropriate electrical enclosure of the proper NEMA or IP rating.
8) When two or more inverters are installed or a ventilation fan is mounted in inverter panel, the inverters and ventilation fan must be installed in proper positions with extreme care taken to keep the ambient temperature of the inverters below the permissible value. If they are installed in improper positions, the ambient temperature of the inverters will rise.

9) Install the inverter using screws or bolts to insure the inverter is firmly fastened.
10) IP5A Series Drives contain protective MOVs and common mode capacitors that are referenced to ground. To guard against drive damage or operation problems, these devices must be properly configured according to below table

Power Source Type	MOV Input Filter Caps	Benefits
3-Phase	Connected	Reduced electrical noise, Most stable operation, Reduced voltage stress on components and motor bearings
AC grounded system 3-Phase Impedance grounded	Disconnected	Helps avoid severe equipment damage when ground fault occurs

Note: 5.5~30kW and 575V Series are not supported.
4. To avoid drive's damage or electric shock, disconnect switch, When Drive's capacitors are discharged completely
\triangle In case of surge and lighting don't flow in the grounded system, you can disconnect the switch.

\bigwedge CAUTION	
4	Risk of Electric Shock More than one disconnect switch may be required to de-energize the equipment before servicing.

3.2 Wiring

3.2.1 Basic wiring

1) For $0.75 \sim 30 \mathrm{~kW}(1 \sim 40 \mathrm{HP})$

2) For $37 \sim 90 k W(50 \sim 125 H P) / 315 \sim 450(400 \sim 600 H P)$

3) For $110 \sim 280 \mathrm{~kW}$ (150~350HP)

4) For 15~30kW (20~40HP) Built-in DCL Type

5) For $37 \sim 90 \mathrm{~kW}$ (50~125HP) Built-in DCL Type

Note : $\mathrm{P} 1(+)$ is not provided for wiring.
6) Power Terminals:
(1) 0.75 ~ 30 kW (200V/400V Class)

$\mathbf{R (L 1)}$	$\mathbf{S}(\mathrm{L} 2)$	$\mathrm{T}(\mathrm{L} 3)$	G	$\mathbf{P} 1(+)$	$\mathbf{P} 2(+)$	$\mathrm{N}(-)$	U	V	W

Jumper
(2) $37 \sim 90 \mathrm{~kW}$ (50~125HP) / 315~450kW (400~600HP) <400V Class $>$

R(L1)	S(L2)	T(L3)	P1(+)	P2(+)	N(-)	U	V	W

Jumper
(3) $15 \sim 18.5 \mathrm{~kW}(20 \sim 25 \mathrm{HP})$ <Built-in DC Reactor Type, 400V Class>

$\mathbf{G} \oplus$	$\mathrm{R}(\mathrm{L} 1)$	$\mathrm{S}(\mathrm{L} 2)$	$\mathrm{T}(\mathrm{L} 3)$	$\mathrm{P}(+)$	$\mathrm{N}(-)$	U	V	W	G

(4) 22~30kW (30~40HP) <Built-in DC Reactor Type, 400V Class>

$\mathbf{R}(L 1)$	$\mathrm{S}(\mathrm{L} 2)$	$\mathrm{T}(\mathrm{L} 3)$	$\mathrm{P}(+)$	$\mathrm{N}(-)$	U	V	W

(5) 37~90kW (50~125HP) / 110 ~280kW (150~350HP) <Built-in DC Reactor Type, 400V Class>

R(L1)	$\mathrm{S}(\mathrm{L} 2)$	$\mathrm{T}(\mathrm{L} 3)$		P2(+)	$\mathrm{N}(-)$	U	V	W

Note : P1(+) is not provided for wiring.

Symbol	Description
$\mathrm{R}(\mathrm{L} 1), \mathrm{S}(\mathrm{L} 2), \mathrm{T}(\mathrm{L} 3)$	AC Line Voltage Input
G	Earth Ground
$\mathrm{P} 1(+), \mathrm{P} 2(+)$	External DC Reactor (P1(+)-P2(+)) Connection Terminals (Jumper must be removed).
$\mathrm{P} 2(+), \mathrm{N}(-)$ or	
$\mathrm{P}(+), \mathrm{N}(-)$	

7）Control circuit terminal
0.75 ～30kW／1～40HP（200V／400V Class）

3A 3C 3B A1 C1	A2 C2 A3 C3 A4 C4

C＋CMC－M6 24 M7 M8	A0 B0 5G 5G S0S1
Q \lll＜	Q⿴囗囚囚

37 ～ 450 kW／50～600HP（400V Class）

		C＋CMC－M6 24 M7M8	CMNC5G 5G ET S0 S1
3A 3C 3B A1 C1	A2 C2 A3 C3 A4 C4	M1CMM2 M3 24 M4M5	V＋V1CM V－I A0 B0
OOOO	OSO		

Note）The terminal specification is subject to change according to decision of manufacturer．

Type		Symbol	Name	Description
	Starting Contact Function Select	M1, M2, M3	Programmable Digital Input 1, 2, 3	Defines Programmable Digital Inputs. (Factory setting : Multi-Step Frequency 1, 2, 3)
		FX [M7]	Forward Run Command	Forward Run When Closed and Stopped When Open.
		RX [M8]	Reverse Run Command	Reverse Run When Closed and Stopped When Open.
		JOG [M6]	Jog Frequency Reference	Runs at Jog Frequency when the Jog Signal is ON. The Direction is set by the FX (or RX) Signal.
		BX [M5]	Emergency Stop	When the BX Signal is ON the Output of the Inverter is Turned Off. When Motor uses an Electrical Brake to Stop, BX is used to Turn Off the Output Signal. Take caution when BX Signal is OFF (Not Turned Off by Latching) and FX Signal (or RX Signal) is ON. If so, motor continues to Run.
		RST [M4]	Fault Reset	Used for Fault Reset.
		CM	Sequence Common (NPN)	Common terminal for NPN contact.
		24	Sequence Common (PNP)	Common 24V terminal for PNP contact input. (maximum output : $+24 \mathrm{~V}, 100 \mathrm{~mA}$)
	Analog frequency setting	V+, V-	Analog Power Source $(+12 V,-12 V)$	Power supply for Analog Frequency Setting. Maximum Output: $+12 \mathrm{~V}, 100 \mathrm{~mA},-12 \mathrm{~V}, 100 \mathrm{~mA}$.
		V1	Frequency Reference (Voltage)	Used by a DC $0-12 \mathrm{~V}$ or $-12 \sim 12 \mathrm{~V}$ input to set the frequency reference. (Input impedance is $20 \mathrm{k} \Omega$)
		1	Frequency Reference (Current)	Used by a 0-20mA input to set the frequency reference. (Input impedance is 249Ω)
		A0, BO	Frequency Reference (Pulse)	Used by a pulse input to set the frequency reference.
		$\begin{aligned} & 5 \mathrm{G}(\sim 30 \mathrm{~kW}) \\ & \mathrm{CM}(37 \mathrm{~kW} \sim) \end{aligned}$	Frequency Reference Common Terminal	Common Terminal for Analog Frequency Reference Signal.
	External motor thermal detection	$\begin{aligned} & \text { NT (} \sim 30 \mathrm{~kW}) \\ & \text { ET }(37 \mathrm{kw} \sim) \end{aligned}$	External motor thermal detection	Motor thermal sensor input. Used to prevent motor from overheating by using a NTC or PTC thermal sensor.
		5G	Common for NT (or ET)	Common Terminal for External motor thermal detection.
Built-in RS485 terminal		C+, C-	RS485 signal High,Low	RS485 signal
		CM	RS485 common	Common Ground. Terminal for RS485 interface.
	Analog Output	S0, S1	Programmable Voltage Output	Voltage output for one of the following: Output Frequency, Output Current, Output Voltage, DC Link Voltage. Default is set to Output Frequency. (Maximum Output Voltage and Output Current are 012 V and 1 mA).
		5G	Analog Common Terminal	Common Terminal for Analog Output (S0, S1).
	Contact	3A, 3C, 3B	Fault Contact Output	Energizes when a fault is present. (AC250V, 1A; DC30V, 1A) Fault : 3A-3C Closed (3B-3C Open) Normal : 3B-3C Closed (3A-3C Open)
		$\begin{aligned} & \text { A1~4, } \\ & \text { C1~4 } \end{aligned}$	Programmable Digital Output	Defined by Programmable Digital Output terminal settings. (AC250V, 1 A or less; DC30V, 1A or less)

Note) M1~M8 terminals are User Programmable. NC terminal is unavailable.

3.2.2 Wiring power terminals
 Wiring Precautions

1) The internal circuits of the inverter will be damaged if the incoming power is connected and applied to output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$).
2) Use ring terminals with insulated caps when wiring the input power and motor wiring.
3) Do not leave wire fragments inside the inverter. Wire fragments can cause faults, breakdowns, and malfunctions.
4) For input and output, use wires with sufficient size to ensure voltage drop of less than 2%.
5) Motor torque may drop of operating at low frequencies and a long wire run between inverter and motor.
6) The cable length between inverter and motor should be less than 150m (492ft). Due to increased leakage capacitance between cables, overcurrent protective feature may operate or equipment connected to the output side may malfunction. The total cable length should be less than $150 \mathrm{~m}(492 \mathrm{ft})$ in case the many motors are connected. Do not use the 3 -core cable in the wiring for long distance. In the wiring for long distance, lower the carrier frequency and use the output circuit filter.

Distance between Motor and inverter	50 m	100 m	Above 100m
Max. permissible carrier freq.	15 kHz	5 kHz	Below 2 kHz

(But for products of less than 11 kW , tha cable lentgh should be less than 100 m .)
7) The main circuit of the inverter contains high frequency noise, and can hinder communication equipment near the inverter. To reduce noise, install line noise filters on the input side of the inverter.
8) Do not use power factor capacitor, surge killers, or RFI filters on the output side of the inverter. Doing so may damage these componentss.
9) Always check whether the LCD and the charge lamp for the power terminal are OFF before wiring terminals. The charge capacitor may hold high-voltage even after the power is disconnected. Use caution to prevent the possibility of personal injury.
10) Do not connect with MC at output pare of inverter and make MC On/Off during operation. It can cause the Trip or damage of inverter.

Grounding

1) The inverter is a high switching device, and leakage current may flow. Ground the inverter to avoid electrical shock. Use caution to prevent the possibility of personal injury. The ground impedance for 200 V class is 100 ohm with 400 V class 10 ohm . (Protective Class : I)
2) Connect only to the dedicated ground terminal of the inverter. Do not use the case or the chassis screw for grounding.
3) The protective earth conductor must be the first one in being connected and the last one in being disconnected.
4) As a minimum, grounding wire should meet the specifications listed below. Grounding wire should be as short as possible and should be connected to the
ground point as near as possible to the inverter.

Inverter Capacity		Grounding Wire Sizes, AWG or kcmil (mm ${ }^{2}$)	
kW	HP	200 V Class	400V Class
$5.5 \sim 7.5$	$7.5 \sim 10$	10	4
$11 \sim 15$	$15 \sim 20$	16	10
$18.5 \sim 30$	$25 \sim 40$	35	16
$37 \sim 55$	$50 \sim 75$	-	25
$75 \sim 90$	$100 \sim 125$	-	35
$110 \sim 132$	$150 \sim 200$	-	70
$160 \sim 280$	$250 \sim 350$	-	150
$315 \sim 375$	$400 \sim 600$	-	240
450	700	-	240

3.2.3 Wires and terminal lugs

Refer to below for wires, terminal lugs, and screws used to connect the inverter power input and output.

Inverter Capacity		Terminal Screw Size	Screw Torque		Wire Size				
		R(L1), S(L2), T(L3)			U, V, W AWG or kcmil				
		kgf $\cdot \mathrm{cm}$	lb \cdot in	mm^{2}		AWG or kcmi	mm^{2}		
	0.75 kW (1HP)		M4	7.1 ~ 12.2	6.2 ~ 10.6	2.5	14	2.5	14
	1.5kW (2HP)								
	2.2 kW (3HP)								
	3.7 kW (5HP)	4				12	4	12	
2	5.5 kW (7.5HP)	6				10	6	10	
0	7.5kW (10HP)	M5	24.5 ~ 31.8	21.2~27.6	10	8	10	8	
V	11kW (15HP)				16	6	16	6	
	15kW (20HP)	M6	30.6 ~ 38.2	26.6~33.2	25	4	25	4	
	18.5kW (25HP)				35	2	35	2	
	22kW (30HP)	M8	61.2 ~ 91.8	53.1~79.7	50	2	50	2	
	30kW (40HP)				70	1/0	70	1/0	
	0.75 kW (1HP)	M4	7.1 ~ 12.2	6.2 ~ 10.6	2.5	14	2.5	14	
	1.5kW (2HP)								
	2.2kW (3HP)								
	3.7 kW (5HP)								
	5.5kW (7.5HP)				4	12	4	12	
4	7.5Kw (10HP)				4	12	4	12	
0	11 kW (15 HP)				6	10	6	10	
0	15 kW (20HP)	M6	30.6~38.2	26.6~33.2	10	8	10	8	
V	$V 18.5 \mathrm{~kW}$ (25HP)				16	6	16	6	
	22~30kW (30~40HP)	M8	61.2~91.8	53.1~79.7	25	4	25	4	
	37~55kW (50~75HP)				35	2	35	2	
	75~90kW(100~125HP)	M10	89.7~122.0	$77.9 \sim 105.9$	70	1/0	70	1/0	
	110~132kW (150~200HP)	M12	182.4~215.0	$\begin{gathered} 158.3 \\ \sim 186.6 \end{gathered}$	120	4/0	120	4/0	
	160kW (250HP)	M12			150	300	150	300	

Inverter Capacity	Terminal Screw Size	Screw Torque		Wire Size			
				R(L1), S(L2), T(L3)			U, V, W
		kgf $\cdot \mathrm{cm}$	lb \cdot in	mm^{2}	AWG or kcmil	mm^{2}	AWG or kcmil
220kW (300HP)				240	400	240	400
280kW (350HP)				240	500	240	500
315 kW (400HP)				300	700	300	700
375kW(500HP)				2×240	2×400	2×240	2×400
450kW (600HP)				2×240	2×500	2×240	2×500

* Apply the rated torque to terminal screws.
* Loose screws can cause of short circuit or malfunction. Tightening the screw too much can damage the terminals and cause a short circuit or malfunction.
* Use copper wires only with $600 \mathrm{~V}, 75^{\circ} \mathrm{C}$ ratings. For $7.5 \sim 11 \mathrm{~kW} 240 \mathrm{~V}$ type inverters, $\mathrm{R}(\mathrm{L} 1), \mathrm{S}(\mathrm{L} 2), \mathrm{T}(\mathrm{L} 3)$ and $\mathrm{U}, \mathrm{V}, \mathrm{W}$ terminals are only for use with insulated ring type connector.

Power and Motor Connection Example (5.5~30kW inverters)

Power supply must be connected to the R(L1), S(L2), and T(L3) terminals. Connecting it to the U, V, and W terminals causes internal damages to the inverter. Arranging the phase sequence is not necessary

Les câblages de l'alimentation électrique doivent être connectés aux bornes R, S et T. Leur connexion aux bornes U, V et W provoque des dommages internes à l'onduleur. Le moteur doit être raccordé aux bornes U, V et W. L'arrangement de l'ordre de phase n' est pas nécessaire.

Motor should be connected to the U, V, and W terminals.
If the forward command (FX) is on, the motor should rotate counter clockwise when viewed from the load side of the motor. If the motor rotates in the reverse, switch the U and V terminals.

Si la commande avant (Fx) est activée, le moteur doit tourner dans le sens antihoraire si on le regarde côté charge du moteur. Si le moteur tourne dans le sens inverse, inverser les câbles aux bornes U et V.

3.2.4 Control circuit wiring

1) Wiring Precautions

CM and 5G terminals are insulated each other. Do not connect these terminals together or to the power ground.
Use shielded wires or twisted wires for control circuit wiring, and separate these wires from the main power circuits and other high voltage circuits (200 V relay sequence circuit).

It is recommended to use the cables of $0.0804 \mathrm{~mm}^{2}$ (28 AWG) $\sim 1.25 \mathrm{~mm}^{2}$ (16 AWG) for TER1, TER2 control terminals and the cables of $0.33 \mathrm{~mm}^{2}$ (22 AWG) ~ $2.0 \mathrm{~mm}^{2}$ (14 AWG) for TER3, TER4 control terminals.
2) Control terminal layout

TER4
$0.33 \mathrm{~mm}^{2}$ (22 AWG) ~ $2.0 \mathrm{~mm}^{2}$ (14 AWG)

TER2
TER1
0.0804 mm 2 (28 AWG) ~ 1.25mm2 (16 AWG)
3) Sink mode (NPN mode) / Source mode (PNP mode)

SV-iP5A provides Sink / Source (NPN/PNP) modes for sequence input terminal on the control circuit.
The logic of the input terminal is setable to Sink mode (NPN mode) / Source mode (NPN mode) by using the J 1 switch. Connection method is as shown below.
(1) Sink mode (NPN mode)

- Put J1 switch down to set to Sink mode (NPN mode). CM terminal (24V GND) is common terminal for contact signal input.
- The factory default is Sink mode (NPN mode).
(2) Source mode (PNP mode) - Internal Power Supply used
- Put J1 switch up to set to Source mode (PNP mode). Terminal 24 (24 V Power Supply) is common terminal for contact input signal.
(3) Source mode (PNP mode) - External Power Supply used
- Put J1 switch up to set to Source mode (PNP mode).
- To use external 24V Power Supply, make a sequence between external Power Supply (-) terminal and CM (24V GND) terminal.

Source mode (PNP mode)

- External Power Supply used

3.2.5 RS485 circuit wiring

Use C+ (RS485 signal High), C- (RS485 signal LOW) in TER 2. Turn the J3 switch ON (Upward) to connect the termination resistor (120 ohm). J3 switch is On the left side of the TER2.

Item	Specification
Transmission type	Bus method, Multi drop Link System
Applicable inverter	SV-iP5A series
Number of inverters	Max.31
Transmission distance	Within 1200m Max. (700m desired)
Recommendable cable	$0.75 \mathrm{~mm}^{2}$ (18AWG), Shield Type Twisted-pair Wire
Installation	C+, C-, CM terminals on the control terminal block
Power supply	Insulated from the inverter power supply

3.2.6 Check points on wiring

1) Electrical or mechanical interlock of MC1 and MC2 is required for Inverter Bypass Operation. Otherwise, chattering may occur or input power may flow to inverter output, damaging the inverter.
2) Make the sequence to disable the Auto restart after power failure if required. Otherwise, inverter will be automatically restarted.
3) Do not apply the voltage directly to control circuit input terminals such as FX, RX

CHAPTER 4 - OPERATION

4.1 Programming Keypads

4.1.1 LCD Keypad

LCD keypad can display up to 32 alphanumeric characters, and various settings can be checked directly from the display. The following is an illustration of the keypad.

1) Keypad dimension

79

4.1.2 2) Detail description

(1) LCD Keypad Display
2) Run/Stop Source

1) Parameter group
2) Parameter group

3) Frequency Setting Source
4) Parameter Code
5) Operating Status
6) Drive Output Frequency During Run, Command Frequency During Stop

Displays	Description
1) Parameter	Displays the parameter group. There are DRV, FU1, FU2, I/O,
Group	EXT, COM, APP groups.
	Displays the source of motor Run and Stop.
K: Run/Stop using FWD, REV buttons on keypad	
2) Run/Stop	T: Run/Stop using control terminal input FX, RX Source R: Run/Stop using RS485 O: Run/Stop via option board 3) Frequency Setting Displays the source of command frequency setting. Source K: Frequency setting using keypad V: Frequency setting using V1 $(0 \sim 12 \mathrm{~V})$ or V1 + I terminal

Displays	Description
	W: Analog frequency reference (V1S: -12 ~ 12V) I : Frequency setting using I ($4 \sim 20 \mathrm{~mA}$) terminal P: Frequency setting using Pulse input R: Frequency setting using RS485 U: Up terminal input when Up/Down operation is selected D: Down terminal input when Up/Down operation is selected S: Stop status when Up/Down operation is selected O: Frequency setting via Option board X: Frequency setting via Sub board J: Jog terminal input 1 ~ 15: Step frequency operation (except Jog)
4) Output Current	Displays the Output Current during operation.
5) Parameter Code	Displays the code of a group. Use the $\mathbf{\Delta}(\mathrm{Up}), \mathbf{\nabla}$ (Down) key to move through 0~99 codes.
6) Operating Status	Displays the operation information. STP: Stop Status FWD: During Forward operation REV: During Reverse operation DCB: During DC Braking LOP: Loss of Reference from Option Board (DPRAM fault) LOR: Loss of Reference from Option Board (Communication network fault) LOV: Loss of Analog Frequency Reference (V1: 0~12V, $-10 \sim 12 \mathrm{~V}$) LOI: Loss of Analog Frequency Reference (I: 4~20mA) LOS: Loss of Reference from Sub-Board
7) Inverter Output Frequency / Command Frequency	Displays the Output Frequency during run. Displays the Command Frequency during stop.

4.1.3 Parameter setting and changing

1) Press [MODE] key until the desired parameter group is displayed.
2) Press [$\mathbf{\Delta}$] or [\mathbf{V}] keys to move to the desired parameter code. If you know the desired parameter code, you can set the code number of each parameter group in "Jump code", except DRV group.
3) Press [PROG] key to go into the programming mode, the cursor starts blinking.
4) Press [SHIFT/ESC] key to move the cursor to the desired digit.
5) Press [\mathbf{U}] or [\mathbf{V}] keys to change the data.
6) Press [ENT] key to enter the data. The cursor stops blinking.

Note: Data cannot be changed when 1) the parameter is not adjustable during the inverter is running (see the function list), or 2) Parameter Lock function FU294 [Parameter Lock] is activated.

EX) Changing Accel time from 10 sec to 15 sec

1) LCD keypad
DRV Acc. time
$01 \quad 10.0 \mathrm{sec}$

DRV Acc. time 01 1 0.0 sec

DRV Acc. time

$01 \quad 10.0 \mathrm{sec}$

$$
\begin{array}{ll}
\text { DRV } & \text { Acc. time } \\
01 & \sqrt{5.0 ~ s e c}
\end{array}
$$

DRV Acc. time $01 \quad 15.0 \mathrm{sec}$

Move to the desired code to change.

Press the [PROG] key. A Cursor (■) will appear.

Use the [SHIFT] key to move the cursor.

Change the data using [$\mathbf{\Delta}$], [$\mathbf{\nabla}$] keys.

Press the [ENT] key to save the value into memory. The Cursor will disappear.

4.1.4 Parameter groups

The iP5A series inverter has 5 parameter groups separated according to their applications as indicated in the following table.
The iP5A series inverter provides two kinds of keypad. One is 32-character alphanumeric LCD keypad and the other is 7-Segment LED keypad.

Parameter Group	LCD Keypad	Description
Drive Group	DRV	Command Frequency, Accel/Decel Time etc. Basic function Parameters
Function 1 Group	FU1	Max. Frequency, Amount of Torque Boost etc. Parameters related to basic functions
Function 2 Group	FU2	Frequency Jumps, Max./Min. Frequency Limit etc. Basic Application Parameters
Input / Output Group	I/O	Programmable Digital Input/Output Terminal Setting, Auto Operation etc. Parameters needed for Sequence Operation
Application Group	APP	PID, MMC (Multi-Motor Control), 2 2nd motor operation etc. Parameters related to Application function

1) Parameter Navigation (LCD Keypad)

The parameter group moves directly to DRV group by pressing [SHIFT] key in any parameter code.

Drive Group FU1 Group FU2 Group I/O Group APP Group

Note: This figure shows the group and code navigation through LCD display keypad. It can be different from the actual display due to the group addition or code change.

4.2 Operating Example

4.2.1 Easy Start Operation

Easy Start Operation is activated by pressing STOP key on the Keypad for 2~3 seconds and inverter begins operation via Keypad (FWD/REV RUN/STOP).
Drive mode is preset to V/F and reference frequency to JOG.

4.2.2 Operation via Control terminal + Keypad

Setting: DRV-03 [Drive Mode (Run/Stop method)] = Fx/Rx-1
DRV-04 [Frequency Mode (Freq. setting method)] = Keypad
With above setting, Freq setting via terminal \& Run/Stop via Keypad disabled

1) Check the LCD display when Power ON. Otherwise, change the setting correctly as shown above.

DRV	T/K	0.0 A
00	STP	0.00 Hz

2) Turn the $F X$ (or RX) terminal ON. Then FWD (or REV) LED will be lit.

		$\mathrm{TRV} / \mathrm{K}$
00	FWD	0.0 A

3) When setting the Ref. Freq to 60 Hz using PROG/ENT/SHIFT, Δ keys, the motor will rotate at 60 Hz . FWD (or REV) LED will be flickering during Acceleration / Deceleration.

4) Turn the FX (or RX) terminal Off. Then Stop LED will be lit.
```
DRV T/K 0.0 A
00 STP 60.00Hz
```

Note) To enable Run/Stop via keypad and Freq setting via control terminal, Setting : DRV-03 [Drive Mode (Run/Stop method)] = Keypad DRV-04 [Frequency Mode (Freq. setting method)] = V1, V1S or I

4.2.3 Operation via Control Terminal

Setting: DRV-03 [Drive Mode (Run/Stop method)] = 1 (Fx/Rx-1)
DRV-04 [Frequency Mode (Freq. setting method)] = 2 (V1)

1) Check the LCD display when Power ON. Otherwise, change the setting correctly as shown above.
```
DRV T/V 0.0 A
00 STP 0.00Hz
```

2) Turn the FX (or RX) terminal ON. Then FWD (or REV) LED will be lit.
```
DRV T/V 0.0 A
00 FWD 0.00Hz
```

3) Set the frequency using V1 (Potentiometer), Output freq (60 Hz). Rotating direction (FWD or REV) and output current (5A) will be displayed on the LCD.
```
DRV T/V 5.0 A
00 FWD 60.00Hz
```

4) Output freq value is decreasing when turning the potentiometer counterclockwise. Inverter output stops at 0.00 Hz and motor is stopped.
```
DRV T/V 0.0 A
00 FWD 0.00Hz
```

5) Turn FX (or RX) terminal OFF.
```
DRV T/V 0.0 A
00 STP 0.00Hz
```


$0.75 \sim 30 \mathrm{~kW}$ products: Common terminal of frequency setting is 5 G terminal.

* $37 \sim 450 \mathrm{~kW}$ products: Common terminal of frequency setting is CM terminal.

4.2.4 Operation via Keypad

Setting : DRV-03 [Drive Mode (Run/Stop method)] = $\mathbf{0}$ (Keypad) DRV-04 [Frequency Mode (Freq. setting method)] = $\mathbf{0}$ (Keypad-1)

1) Check the LCD display when Power ON. Otherwise, change the setting as shown above.

DRV	K/K	0.0 A
00	STP	0.00 Hz

2) Set the Ref. Freq to 60 Hz using PROG/ENT/SHIFT, Δ keys. Set freq is displayed during stop.
```
DRV K/K 0.0 A
00 STP 60.00Hz
```

3) When pressing FWD/REV key, motor starts running and output freq and output current are displayed.
```
DRV K/K 5.0 A
00 FWD 60.00Hz
```

4) Press STOP/RESET key. Then motor decelerates to stop. Set freq 60 Hz is displayed.

DRV	K/K	0.0 A
00	STP	60.00 Hz

4.3 Various function setting and Description

4.3.1 Basic function parameter setting

It is the basic function setting. All settings are factory defaults unless users make change. It is recommended to use factory setting value unless the parameter change is necessary.

1) Common parameter setting

The following table shows common parameter setting that should be checked before use regardless of control mode.

Parameter Name	Code	Description
Line Freq.	FU1-29	Sets a freq of the inverter input power source.
Base Frequency	FU1-31	Sets the Motor Base Frequency ${ }^{1 /}$.
Motor Rated Voltage	FU1-50	Sets the Motor Rated Voltage ${ }^{1)}$.
Motor Selection	FU2-40	Selects motor and voltage rating suitable to the desired inverter.
Motor Parameters	FU2-41 ~ 46	Basic parameter value setting when selecting the motor rating. Note : If there is any discrepancy between parameter preset value and the actual motor parameter value, change the parameter value according to the actual motor.
Drive Mode	DRV-3	Operation via Keypad, Fx/Rx-1, Fx/Rx-2 and Int 485 setting.
Frequency Mode	DRV-4	Frequency reference source setting parameter
Accel/Decel Time Setting	DRV-1 DRV-2	Accel/Decel time setting

1) If FU1-31 and FU1-50 are set higher than motor nameplate value, it may cause motor overheat and if it is set smaller than that, it may cause Over voltage trip during deceleration. Make sure to enter the actual motor value.

2) V/F control

FU2-60 [Control mode] is set to 0 "V/F" as factory setting. Operation via V/F control is activated after the above common parameter setting is done and the followings are set.

Parameter Name	Code	Description
Starting freq.	FU1-32	Set frequency to start the motor.
Torque boost	FU2-67	Manual or Auto torque boost settable in this parameter.
Torque boost value	FU2-68 FU2-69	If FU1-67 [torque boost] is set to "manual", user sess the desired value and the direction in code FU1-68 and 69.

3) Slip compensation

Operation is done via Slip compensation if FU2-60 is set to 1 \{Slip compen\}. This control keeps motor speed constant regardless of load change.

4) Sensorless vector control

Set FU2-60 to "Sensorless" to enable Sensorless vector control. It is strongly recommended to perform Auto-tuning before starting Sensorless control in order to maximize performance.

Parameter Name	Code	Description
Control method selection	FU2-60	Select Sensorless.
P, I gain for sensorless control	FU2-65, FU2-66	Set gain for Sensorless.
Starting freq	FU1-32	Starting freq of the motor

Note) No-load current for Sensorless control is not entered by auto-tuning. Therefore enter the no-load current value in V/F operation. When other than LS standard motor is used, set this value according to the motor in use for better performance.

5) Auto-tuning of motor constant

This parameter enables auto-tuning of the motor constants. If FU2-61 is set to Yes and press the enter key, Rs, Lsigma values begin tuning with the motor stopped. Refer to motor nameplate for the rest of other parameters.

Parameter Name	Code	Description
Auto-tuning	FU2-61	No, Yes

Note) Motor no-load current and slip freq should be set correctly for safe and better performance. Be sure to check these values and set them properly.
Refer to Chapter 5, FU2-40~66 for more.

4.3.2 Advanced function setting

SV-iP5A inverter features advanced function parameters to maximize efficiency and performance of the motor. It is recommended to use the factory setting unless parameter value change is inevitable.

1) V/F control
Parameter Name Code \quad Description
V/F Pattern
:---
can select the optimum output V/F characteristic for the application and
load characteristics in [FU1-41]~[FU1-48].
:---:
operation
:---
Used to output torque in an intended direction. Inverter stops acceleration for the preset [FU2-08] Dwell time while running at Dwell frequency [FU2-07] and starts acceleration at commanded frequency. Setting [FU2-08] Dwell time to 0 disable the Dwell operation.
Frequency
FU2-1~16
:---
frequency of a mechanical system, these parameters allow resonant
frequencies to be jumped. Up to three areas can be set, with the jump
frequencies set to either the top or bottom point of each area. To
enable the function, set [FU2-10] to 'Yes' and set the value in [FU2-
11]~[FU2-16].

2) Sensorless vector control

Related parameters for starting in Sensorless vector control when FU2-60
[Control Mode Selection] is set to Sensorless.

Parameter Name	Code	Description
When starting	FU2-64	Pre-excitation time setting
	I/O-20~27	Programmable Digital Input terminals define

3) Parameters to monitor motor and inverter status

Parameter Name	Code	Description
Output current/ motor speed	DRV-8~9	Displays output current and motor rpm.
DC link voltage	DRV-10	Displays DC link voltage.
User display selection (Voltage and watt)	DRV-11 FU2-81	Either output voltage or power selected in FU2-81 is displayed in DRV-11.
Fault display	DRV-12	Displays the current inverter fault.
TAR / OUT Freq. display	DRV-14	Displays Target freq. for Accel/Decel and Output freq during Accel/Decel.
REF/FBK display	DRV-15	Displays PID Reference/ Feedback frequency display.
Speed (Hz / Rpm) selection	DRV-16	Selects inverter output speed unit [Hz or Rpm].
PID parameter	DRV-18	Displays related parameters of PID controller.
AD parameter	DRV-19	Displays inverter analog input value to AD value.
EXT - PID parameter	DRV-20	Displays related parameters of EXT-PID controller.

Note) DRV-15, DRV-18 only displayed when APP-02 [proc PI mode] is set to "Yes." DRV-20 only displayed when APP-80 [Ext PI mode] is set to "Yes."
4) Parameter initialize

Parameter Name	Code	Description
Software version	FU2-82	Displays the inverter software version.
	FU2-91	[FU2-91], [FU2-92] : Copying parameters from
Parameter	FU2-92	other inverter
Read/Write/	FU2-93	[FU2-93] : Initializing parameters to factory setting
Initialize/Lock	FU2-94	values
	FU2-95	[FU2-94] : Parameter write disabled
	$[$ [FU2-95] : Parameter save	

Note: Motor parameters (FU2-40~46, FU2-62~63) returned to factory setting once Parameter Read/Write is executed.
5) Protection and Trip level setting

Parameter Name	Code	Description
Electronic thermal	$\begin{aligned} & \text { FU1-60 } \\ & \text { FU1-61 } \\ & \text { FU1-62 } \\ & \text { FU1-63 } \end{aligned}$	Protection of the motor from overheating without the use of external thermal relay. Refer to parameter descriptions for more detail.
Overload alarm and trip	FU1-64 FU1-65 FU1-66 FU1-67 FU1-68	Warning alarm outputs and displays the trip message when overcurrent above the threshold value keeps on.
Stall prevention	$\begin{aligned} & \text { FU1-70 } \\ & \text { FU1-71 } \end{aligned}$	Set the output current level at which the output freq will be adjusted to prevent the motor from stopping due to over-current etc. It activates during accel/ constant speed/decel to prevent the motor stall.

6) Starting / Accel / Decel / Stopping pattern setting

Parameter Name	Code	Description		
Accel/Decel pattern	FU1-02			
FU1-03				2 types of Accel/Decel pattern: 'S-curve', 'U-curve'
:---				
settable according to application and load				
characteristic. If 'S-curve' is selected, the desired				
value of [FU1-4], [FU1-5] is settable.				

7) Operation-starting method

Parameter Name	Code	Description
	FU2-20	Motor starting method:
	FU2-21	[FU2-20] Power-on run
Starting Method	FU2-21] Restart after Fault Reset	
	FU2-25	[FU2-25] Number of Auto Restart Attempt [FU2-25 [FU2-26] Delay Time Before Auto Restart
Speed Search	FU2-22	Speed search function is available during Accel, Selection
	FU2-23	
trip, instant power failure, restart after fault reset		
and Speed search at auto restart.		

Chapter 4-Operation

4.3.3 Application function setting

1) PID operation

Inverter can be used to exercise process control, e.g. flow rate, air volume or pressure via PID feedback control.

Parameter Name	Code	Description
PID control setting	APP-02 ~ APP-17	Parameters for PID control setting

2) Ext PID operation

It is used for External PID feedback control.

Parameter Name	Code	Description
ExtPID setting	APP-80 ~ APP-97	Parameters for Ext PID

3) Pre PID operation

It helps to begin smooth start of the PID control.

Parameter Name	Code	Description
PrePID setting	APP-74 ~ APP-76	Parameters for Pre PID operation

4) MMC operation

Inverter controls a whole system by controlling Main motor connected directly to the inverter and Aux motors connected to the inverter relays and operated via relay On/Off.

Parameter Name	Code	Description
MMC setting	APP-40 \sim APP-71 I/O-20 \sim I/O-27	Parameters for MMC operation

5) Jog and Multi-speed operation

Parameter Name	Code	Description
Multi function input terminal setting	I/O-20 ~ 27	If I/O-20 ~ 27 are set to Speed-H, Speed-M, Speed-L, multi- speed operation up to speed 17 is available.
Filter time constant for input terminal	I/O-29	Effective for eliminating noise in the freq. Setting circuit
Speed reference value	DRV-05 ~ 07 I/O-31 \sim I/O-42	Speed reference value for each step setting

Chapter 4-Operation

Parameter Name	Code	Description
Accel/Decel time setting for each step	I/O-50~63	Accel/Decel time for each step setting
Jog freq.	I/O-30	jog freq for jog operation setting

Speed- \mathbf{X}	Speed \mathbf{H}	Speed- \mathbf{M}	Speed- \mathbf{L}	JOG	Speed Command	Parameter value
0	0	0	0	0	Speed 0	DRV-00
0	X	X	X	1	Jog freq.	I/O-20
0	0	0	1	0	Speed -1	DRV-05
0	0	1	0	0	Speed -2	DRV-06
..
..
1	1	0	1	0	Speed -13	I/O-40
1	1	1	0	0	Speed -14	I/O-41
1	1	1	1	0	Speed -15	I/O-42

6) $2^{\text {nd }}$ motor operation
$2^{\text {nd }}$ function setting is required to run the two motors by one inverter by exchange.
If the terminal defined for $2^{\text {nd }}$ function signal input is turned $\mathrm{ON}, 2^{\text {nd }}$ motor operation is valid.

Parameter Name	Code	Description
Programmable Digital Input terminals setting	I/O-20 ~27	$2^{\text {nd }}$ motor operation is available with Programmable Digital Input terminals M1 \sim M8 set to $7\left\{2^{\text {nd }}\right.$ Func\}.
Parameter setting for 2 2nd motor operation	APP-20 ~ APP-29	Setting parameters necessary to operate $2^{\text {ndin }}$ motor such as base freq., Accel/Decl time, Stall.

7) Energy-saving operation

FU1-51 [Energy Save Level] tunes the inverter output voltage to minimize the inverter output voltage during constant speed operation. Appropriate for energysaving applications such as fan, pump and HVAC.

4.4 Operation Example

[^0]| Operation Example (2) | | $2^{\text {nd }}$ motor operation | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ```[Operation condition] -. Control mode : V/F control \(-.1^{\text {st }}\) motor \(+2^{\text {nd }}\) motor Operation by exchange using [\(2^{\text {nd }}\) Func] (Set Value different) -. Frequency command : Using Multi-step operation \(1^{\text {st }}\) motor --- \(50[\mathrm{~Hz}]\) as main speed \(2^{\text {nd }}\) motor --- \(20[\mathrm{~Hz}]\) with M1 terminal set as multi- step operation) -. Accel/Decel time : \(1^{\text {st }}\) motor --- Accel time : \(15[\mathrm{sec}]\), Decel time : 25 [sec] \(2^{\text {nd }}\) motor --- Accel time : \(30[\mathrm{sec}]\), Decel time : 40 [sec] -. Drive mode : Run/Stop via FX/RX, Control terminal : NPN mode``` | | | | | | |
| [Wirin | g] \square | | | 1) 2) 3) | | 1st motor
 2nd motor |
| Step | | arameter setting | Code | | | |
| 1 | Con | ol Mode Selection | FU2-60 | | V/F\}. | |
| 2 | | Drive mode | DRV-3 | | /Rx-1. | |
| 3 | Freq | ency Mode setting | DRV-4 | | keypad | etting |
| 4 | Progra | mmable digital input terminal M1 | I/O-20 | | 2nd Fun | |
| 5 | Progr | mmable digital input terminal M2 | I/O-21 | | Speed-L | ng. |
| 6 | Freq | setting for $1^{\text {st }}$ motor | DRV-0 | | [Hz]. | |
| 7 | Acce | /Decel time setting for $1^{\text {st }}$ motor | $\begin{aligned} & \hline \text { DRV-1 } \\ & \text { DRV-2 } \end{aligned}$ | | Decel tim | |
| 8 | Freq | setting for ${ }^{\text {nd }}$ motor | DRV-5 | | [Hz]. | |
| 9 | Acce | /Decel time setting for $2^{\text {nd }}$ motor | $\begin{aligned} & \hline \text { APP-20 } \\ & \text { APP-21 } \\ & \hline \end{aligned}$ | | Decel tim | |
| 10 | | motor operation | | | in motor or in FW | $\begin{aligned} & \text { utput rel } \\ & \mathrm{g} \mathrm{FX/RX} \end{aligned}$ |
| 11 | | motor operation | - | | tor para freq s hange to ON. R y termin | termina
 urning
 by tur D/REV |

$\begin{aligned} & \text { Ope } \\ & \text { Exar } \end{aligned}$	$\begin{aligned} & \text { ation } \\ & \text { iple (3) } \end{aligned}$	V/F control + Analog input (V1S) + Operation via terminal FX/RX				
[Operation condition] . Control mode : V/F control -. Frequency command : Setting $50[\mathrm{~Hz}]$ via Analog input (V1S) -. Accel/Decel time : Accel time 15 [sec], Decel time 25 [sec] -. Drive mode : Run/Stop via FX/RX, Control terminal: NPN mode						
[Wiring]						
Step	Parameter setting		Code		Des	on
1	Control modeselection		FU2-60	Set it to 0 \{V/F\}.		
2	Drive mode		DRV-3	Set it to 1 \{Fx/Rx-1\}.		
3	Frequency mode		DRV-4	Set it to 3 \{V1S\}.		
4	Operating frequency command $50[\mathrm{~Hz}]$ setting		DRV-0	Set $50[\mathrm{~Hz}]$ via potentiometer (V1S).		
5	Accel/Decel time setting		$\begin{aligned} & \hline \text { DRV-1 } \\ & \text { DRV-2 } \\ & \hline \end{aligned}$	Set Accel. time to $15[\mathrm{sec}]$ in DRV-1 with Decal. time to 25[sec] in DRV-2.		
6	FX terminal (M7)		IO-26	When FX terminal is turned ON, motor rotating in forward direction starts running at $50[\mathrm{~Hz}]$ for $15[\mathrm{sec}]$. When FX terminal is turned OFF, motor decelerates to stop for $25[\mathrm{sec}]$.		
7	RX terminal (M8)		IO-27	When RX terminal is turned ON, motor rotating in reverse direction starts running at $50[\mathrm{~Hz}$ for $15[\mathrm{sec}]$ When RX terminal is turned OFF, motor decelerates to stop for 25 [sec].		

Note: V1S mode enables Forward/Reverse rotation using $\pm 12 \mathrm{~V}$ power via Analog input command.
Note: Use V1 instead of V1S mode when FWD/REV Run Prevention is active. V1S mode enables the motor to run both FWD/REV directions.

Note: If the inverter is operated without wiring a motor, trip occurs as below because the protection function is active automatically. In this case, refer to the related parameters(FU1 $57 \sim 59)$. Trip is reset if the inverter is powered down and up once again.

In case that a simple trial run is needed such as a check on basic operation state without a wiring a motor, FU1-57(No Motor Sel) should be set to [No].

CHAPTER 5 - PARAMETER LIST

5.1 Parameter groups

The parameters of SV-IP5A Series are divided into 5 function groups in accordance with the application.
Their names, principal contents and LCD keypad displays are shown below.

Name of Group	LCD Keypad Display	Description
Drive Group [DRV]	$\begin{array}{\|lr\|} \hline \text { DRV } & \text { TT/K } \\ 00 & \text { STP } \\ 00 & 0.0 \mathrm{~A} \\ \hline \end{array}$	Target frequency and Accel/ Decel Time, etc. Basic parameters
Function1 Group [FU1]	FU1 00	Maximum Frequency and Protection etc. Parameters regarding basic functions
Function2 Group [FU2]		Frequency Jump and Frequency Limit, etc Parameters regarding application functions
Input/Output Group [//O]	$\begin{aligned} & 1 / 0 \searrow \text { Jump code } \\ & 00 \end{aligned}$	Programmable Digital terminal Define and Analog Command, etc Parameters necessary for sequence configuration
Application Group [APP]	APP Jump code 00 100	PID, MMC, and $2^{\text {nd }}$ motor, etc. Parameters regarding application functions

5.2 Parameter list

* The number of page is for User's manual uploaded at LSIS website. You can download the User's manual which is described detailed function of parameter from website. (http://www.Isis.com)
[DRV Group]

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
DRV-00 (1)	9100	Command Frequency (Output Frequency during motor run, Reference Frequency during motor stop), Output Current (LCD)	Cmd. freq	0 to FU1-30[Hz]	0 [Hz]	0	6-1
DRV-01	9101		Acc. Time	0 to 6000 [sec]	$\begin{array}{\|c\|} \hline 20[\mathrm{sec}] \\ \hline 60[\mathrm{sec}] \\ \hline \end{array}$	0	6-2
DRV-02	9102	Deceleration $0.75 \sim 90 \mathrm{~kW}$ $(1 \sim 125 \mathrm{HP})$ Time $110 \sim 450 \mathrm{~kW}$ $(150 \sim 600 \mathrm{HP})$	Dec. time	0 to 6000 [sec]	$\begin{array}{\|c\|} \hline 30[\mathrm{sec}] \\ \hline 90[\mathrm{sec}] \\ \hline \end{array}$	0	6-2
DRV-03	9103	Drive Mode (Run/Stop Method)	Drive mode	$\begin{aligned} & \hline 0 \text { (Keypad) } \\ & 1 \text { (Fx/Rx-1) } \\ & 2 \text { (Fx/Rx-2) } \\ & 3 \text { (Int. 485) } \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} 1 \\ (F x / R x-1) \end{array}\right\|$	X	6-3
DRV-04	9104	Frequency Mode (Frequency setting method)	Freq mode	0 (Keypad-1) 1 (Keypad-2) 2 (V1) 3 (V1S) 4 (I) 5 (V1+I) 6 (Pulse) 7 (Int. 485) 8 (Ext. PID)	$\left\lvert\, \begin{gathered} 0 \\ \text { (Keypad } \end{gathered}\right.$ $-1)$	X	6-3
DRV-05	9105	Step Frequency 1	Step freq-1		$10[\mathrm{~Hz}]$	0	
DRV-06	9106	Step Frequency 2	Step freq-2	0 to FU1-30[Hz]	$20[\mathrm{~Hz}]$	0	6-3
DRV-07	9107	Step Frequency 3	Step freq-3		$30[\mathrm{~Hz}]$	0	
DRV-08	9108	Output Current	Current	* [A]	${ }^{*}[\mathrm{~A}]$	*	6-4
DRV-09	9109	Motor Speed	Speed	*[rpm]	${ }^{*}$ [rpm]	*	6-4
DRV-10	910A	DC link Voltage	DC link Vtg	* [V]	* [V]	*	6-4
DRV-11	910B	User Display Selection	User disp	-	Output voltage $[\mathrm{V}]$	*	6-4
DRV-12	910C	Current Trip Display	Fault	*	*	*	6-4
DRV-14(2)	910E	Target/Output Frequency Display	Tar. Out. Freq.	* [Hz]	* [Hz]	*	6-5
DRV-15(2)	910F	Reference/Feedback Frequency Display	Ref. Fbk. Freq.	* [Hz]	* [Hz]	*	6-5

Chapter 5 - Parameter List

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
DRV-16	9110	Speed Unit Selection	Hz/Rpm Disp	Hz or Rpm	Hz	0	6-6
DRV-18 (2)	9112	PID Parameter	$\begin{array}{ll}R & \text { T } \\ \text { F } & 0\end{array}$	* [Hz]	* [Hz]	X	6-6
DRV-19	9113	AD Parameter	$\begin{array}{ll} \hline \text { V1 V2 } \\ \text { V1S I } \end{array}$	*	*	X	6-6
$\begin{gathered} \hline \text { DRV-20 } \\ (3) \\ \hline \end{gathered}$	9114	EXT-PID Parameter	$\begin{array}{ll} \hline R & T \\ \mathrm{~F} & \mathrm{O} \\ \hline \end{array}$	\%	\%	X	6-6
DRV-22	9116	Local/Remote Key	LocalRemKey	$\begin{aligned} & \text { 0.(2 } 2^{\text {nd }} \text { Source) } \\ & 1 \text { (Cntl\&RefStop) } \\ & 2 \text { (Control Stop) } \\ & 3 \text { (Ref Only) } \\ & 4 \text { (Cntl\&Ref Run) } \\ & 5 \text { (Control Run) } \\ & 6 \text { (Disable) } \end{aligned}$		0	6-6
DRV-23	9117	Keypad Mode	Key Ref Mode	$\begin{aligned} & 0 \text { (Minimum Spd) } \\ & 1 \text { (Last Spd) } \\ & 2 \text { (Preset Spd 1) } \\ & 3 \text { (Stop) } \\ & 4 \text { ((Fault) } \\ & 5 \text { (Disable) } \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} 5 \\ \text { (Disable) } \end{array}\right\|$	0	6-7
DRV-91 (4)	915B	Drive mode 2	Drive mode2	$\begin{aligned} & 0 \text { (Keypad) } \\ & 1 \text { (Fx/Rx-1) } \\ & 2(\text { Fx//Rx-2) } \end{aligned}$	$\begin{array}{\|c} \hline 1 \\ (F x / R x- \\ 1) \\ \hline \end{array}$	X	-
DRV-92	915C	Frequency mode 2	Freq mode2	0 (Keypad-1) 1 (Keypad-2) 2 (V1) 3 (V1S) 4 (I) 5 (V1+I) 6 (Pulse)		X	-

(1) The speed unit is changed from [Hz] to [\%] when DRV-16 is set to [Rpm]. Only User Unit will be displayed when APP-02 is set to [Yes] and when APP-06 is set to either I, V1 or Pulse and when one of I/O-86~ I/O-88 is set to either [Speed] (Hz or Rpm), [Percent], [Bar], [mBar], [kPa] or [Pa]. Output Frequency (Hz or Rpm; Unit of outupt speed) is displayed in DRV-00 during the Inverter is running. User Unit reference (Unit of PID controller selected) is displayed in DRV-00 during the Inverter is not running.
(2) DRV-15, DRV-18 will appear when APP-02 [Process PI Mode] is set to "Yes". Also User Unit is displayed when one of $/ / \mathrm{O}-86 \sim$ //O-88 is set to either [Speed](Hz or Rpm), [Percent], [Bar], [mBar], [kPa] or [Pa].
(3) DRV-20 will appear when APP-80 [ExtProcess PI Mode] is set to "Yes".
(4) DRV-91/92 will appear only when DRV-22 is set to [2nd Source].

Chapter 5 - Parameter List
[FU1 GROUP]

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
FU1-00	9200	Jump to Desired Code \#	Jump code	$\begin{gathered} 1 \text { to } 74 \\ \text { (Use Only LCD } \\ \text { Keypad) } \\ \hline \end{gathered}$	1	0	6-8
FU1-01	9201	Run Prevention	Run prevent	$0{ }^{0}$ (None)	0 (None)	X	6-8
				1 (Fwd prev)			
				$2{ }^{2}$ (Rev prev)			
FU1-02	9202	Acceleration Pattern	Acc. Pattern	0 (Linear)	0 (Linear)	X	6-8
				1 (S-curve)			
				2 (U-curve)			
FU1-03	9203	Deceleration Pattern	Dec. Pattern	0 (Linear)	0 (Linear)	X	6-8
				1 (S-curve)			
				2 (U-curve)			
$\begin{array}{\|c} \hline \text { FU1-04 } \\ (5) \end{array}$	9204	Start Curve for S-Curve Accel/Decel Pattern	Start SCurve	0 to 100 [\%]	50 [\%]	X	
FU1-05	9205	End Curve for S-Curve Accel/Decel Pattern	End SCurve	0 to 100 [\%]	50 [\%]	X	
FU1-10	920A	Pre-Heat	Pre-Heat mode	(No)	0 (No)	X	6-9
				1 (Yes)			
FU1-11	920B	Pre-Heat Value	Pre Heat level	1 to 50 [\%]	30 (\%)	X	
FU1-12	920C	Pre-Heat Duty	Pre Heat Perc	1 to 100 [\%]	50 (\%)	X	
FU1-20	9214	Start Mode	Start mode	0 (Accel)	0 (Accel)	X	6-10
				1 (Dc-start)			
				2 (Flying-start)			
$\begin{gathered} \text { FU1-21 } \\ \text { (6) } \end{gathered}$	9215	Starting DC Injection Braking Time	DcSt time	0 to 60 [sec$]$	0.1 [sec]	X	6-10
FU1-22	9216	Starting DC Injection Braking Value	DCSt value	0 to 150 [\%]	50 [\%]	X	
FU1-23	9217	Stop Mode	Stop mode	0 (Decel)	0 (Decel)	X	6-10
				1 (Dc-brake)			
				2 (Free-run)			
				3 (Flux-brake)			
FU1-24 (7)	9218	DC Injection Braking On-delay Time	DcBlk Time	0.1 to 60 [sec]	0.1 [sec]	X	
FU1-25	9219	DC Injection Braking Frequency	DcBrk freq	0.1 to $60[\mathrm{~Hz}]$	$5[\mathrm{~Hz}]$	X	6-11
FU1-26	921A	DC Injection Braking Time	DcBr time	0 to 60 [sec$]$	$1[\mathrm{sec}]$	X	
FU1-27	921B	DC Injection Braking Value	DcBr value	0 to 200 [\%]	50 [\%]	X	

Chapter 5 - Parameter List

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	$\begin{array}{\|c} \hline \text { Adj. } \\ \text { During } \\ \text { Rung } \end{array}$	Page
FU1-28	921C	Safety Stop	Safety Stop	(No)	0 (No)	X	6-12
				$1{ }^{1}$ (Yes)			
FU1-29	921D	Power Source Frea	Line Freq	40 to 120 [zz$]$	$60.00[\mathrm{~Hz}]$	X	6-12
FU1-30	921F	Max Frequency	Max Freq	30-120[Hz]	$60.00[\mathrm{~Hz}]$	X	6-12
FU1-31	9220	Base Frequency	Base Freq	30-120[Hz]	$60.00[\mathrm{~Hz}]$	X	6-12
FU1-32	9220	Starting Frequency	Start Freq	0.01 to 10 [Hz]	0.50 [Hz$]$	X	6-12
FU1-33	9221	Frequency Limit selection	Freq limit		0 (No)	x	6-13
				1 (Yes)			
$\begin{array}{\|c\|} \hline \text { FU1-34 } \\ (8) \\ \hline \end{array}$	9222	Freq Lower Limit	Lim Lo Freq	0-FU1-35	$0.50[\mathrm{~Hz}]$	\bigcirc	6-13
FU1-35	9223	Freq Upper Limit	Lim Hi Freq	FU1-34-FU1-30	$60.00[\mathrm{~Hz}]$	X	6-13
FU1-40	9228	Volts/Hz Pattern	V/F Pattern	(Linear)	0 (Linear)	x	6-14
				(Square)			
				2 (User V/F)			
	9229	User V/F-Frequency 1	User freq 1	0 to FU1-30	$15.00[\mathrm{~Hz}]$	X	
FU1-42	922A	User V/F - Voltage 1	User volt 1	0 to 100 [\%]	25 [\%]	X	
FU1-43	922B	User V/F - Frequency 2	User freq2	0 to FU1-30	$30.00[\mathrm{~Hz}]$	X	
FU1-44	922C	User V/F - Voltage 2	User volt 2	0 to 100 [\%]	50 [\%]	X	6-14
FU1-45	922D	User V/F - Frequency 3	User freq3	0 to FU1-30	$45.00[\mathrm{~Hz}]$	X	
FU1-46	922E	User V/F - Voltage 3	User volt 3	0 to 100 [\%]	75 [\%]	X	
FU1-47	922F	User V/F - Frequency 4	User freq 4	0 to FU1-30	$60.00[\mathrm{~Hz}]$	X	
FU1-48	9230	User V/F - Voltage 4	User volt 4	0 to 100 [\%]	100.\%]	X	
FU1-49	9231	Input voltage adjustment	VAC voltage	73 to 115.0 [\%]	86.4 [\%]	X	6-15
FU1-50	9232	Motor Rated Voltage	Motor Volt	0 to 600 [V]	380 [V]	X	6-15
FU1-51	9233	Energy Save	Energy save	0 (None)	0 (None)	X	6-15
				1 (Manual)			
				2 (Auto)			
FU1-52 (10)	9234	Energy Save \%	Manual save\%	0 to 30 [\%]	0 [\%]	0	
FU1-54 (13)	9236	Integrating Wattmeter	KiloWatthour	M kWh		X	6-16
FU1-55	9237	Inverter Temperature	Inv. Temp.		*	X	6-16
FU1-56	9238	Motor Temperature	Motor Temp.	010160 [degree]	*	X	6-16
FU1-57	9239	No Motor Selection	No Motor Sel	0 (No)	0 (No)	x	6-16
				1 (Yes)			
FU1-58	923A	Trip Current Level	No Motor Level	5 to 100 [\%]	5 [\%]	X	6-16
FU1-59	923B	Trip Time Setting	No Motor Time	0.5 to 10.0 [sec$]$	$3.0[\mathrm{sec}]$	X	6-16
FU1-60	923C	Electronic Thermal	ETH select	0 (No)	1 (Yes)	0	6-17

Chapter 5 - Parameter List

Chapter 5 - Parameter List
[FU2 GROUP]

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
FU2-00	9300	Jump to desired code \#	Jump code	$\begin{gathered} 1 \text { to } 95 \\ \hline \text { (Use Only LCD Keypad) } \end{gathered}$	40	0	6-21
FU2-01	9301	Last trip 1	Last trip-1	By pressing [ENTER] and [SEL] key, the frequency, current, and operational status at the time of fault can be seen.	0 (None)	*	6-21
FU2-02	9302	Last trip 2	Last trip-2			*	6-21
FU2-03	9303	Last trip 3	Last trip-3			*	6-21
FU2-04	9304	Last trip 4	Last trip-4			*	6-21
FU2-05	9305	Last trip 5	Last trip-5			*	6-21
FU2-06	9306	Erase trips	Erase trips	0 (No)	0 (No)	0	6-21
				(Yes)			
FU2-07	9307	Dwell Frequency	Dwell time	0 to 10 [sec]	0 [sec]	X	6-21
$\begin{gathered} \text { FU2-08 } \\ (12) \\ \hline \end{gathered}$	9308	Dwell Frequency	Dwell freq	FU1-32 to FU1-30	$5[\mathrm{~Hz}]$	X	6-21
FU2-10	930A	Frequency Jump Selection	Jump Freq	0 (No)	0 (No)	X	6-21
				(Yes)			
$\begin{gathered} \text { FU2-11 } \\ (13) \\ \hline \end{gathered}$	930B	Jump Frequency 1 Low	jump lo 1	0 to FU2-12	10 [Hz]	0	6-21
FU2-12	930C	Jump Frequency 1 High	jump Hi 1	FU2-11 to FU1-30	15 [Hz]	0	
FU2-13	930D	Jump Frequency 2 Low	jump lo 2	0 to FU2-14	$20[\mathrm{~Hz}]$	0	
FU2-14	930E	Jump Frequency 2 High	jump Hi 2	FU2-13 to FU1-30	$25[\mathrm{~Hz}]$	0	
FU2-15	930F	Jump Frequency 3 Low	jump lo 3	0 to FU2-16	$30[\mathrm{~Hz}]$	0	
FU2-16	9310	Jump Frequency 3 High	jump Hi 3	FU2-15 to FU1-30	$35[\mathrm{~Hz}]$	0	
FU2-20	9314	Power ON Start Selection	Power-on run RST restart	0 (No)	0 (No)	0	6-22
				1 (Yes)			
FU2-21	9315	Restart after Fault Reset	RST restart	0 (No)	0 (No)	0	
				1 (Yes)			
FU2-22	9316	Start After Interrupt Power Fault Selection	IPF Mode	0 (No)	O(No)	X	6-23
				1 (Yes)			
FU2-23	9317	Speed Search Type Selection	Search Type	estmated SS	$\begin{array}{\|c\|} \hline \text { estmated } \\ \text { SS } \end{array}$	0	6-23
FU2-24	9318	Retry mode	Retry mode	NO/YES	0 (No)	0	6-24
FU2-25	9319	Number of Auto Retry	Retry number	0 to 10	0	0	6-24
$\begin{gathered} \text { FU2-26 } \\ (15) \end{gathered}$	931A	$\begin{gathered} \text { Delay Time } \\ \text { Before Auto Retry } \end{gathered}$	Retry delay	0 to 60 [sec]	1 [sec]	0	6-24
FU2-27	931B	Speed Search Limit	Flying Perc	30 to 160	70\%	X	6-23

Chapter 5 - Parameter List

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
FU2-40	9328	Motor Capacity selection Inverter (5.5 ~ 450 kW)	Motor select		Depending on the inverter capacity	X	6-25
		* A motor rating same as inverter capacity is automatically Number of Motor Poles			nt, set th	rrec	
FU2-41	9329				4	X	6-25
FU2-42	932A	Motor Slip	Rate-Slip	0.00 to 10.00		X	
FU2-43	932B	$\begin{array}{\|l} \hline \text { Rated Current of Motor } \\ \text { (rms) } \\ \hline \end{array}$	Rated-Curr	1.0 to 999.9[A]	on the motor	X	
FU2-44	932C	$\underset{\text { (rms) }}{\text { No Load Motor Current }}$	Noload-Curr	0.1 to 999.9	capacity	X	6-25
FU2-46	932E	Load Inertia	Inertia rate	0 to 40	10	X	
FU2-47	932F	Gain for Motor Speed Display	$\begin{gathered} \mathrm{RPM} \\ \text { DisplayGn } \end{gathered}$	1 to 1000 [\%]	100 [\%]	0	
FU2-48	9330	Carrier Frequency	Carrier freq	$5.5 \sim 22 \mathrm{~kW}$ $0.7 \sim 15[\mathrm{kHz}]$ 30 kW $0.7 \sim 10[\mathrm{kHz}]$ $37 \sim 75 \mathrm{~kW}$ $0.7 \sim[\mathrm{kHz}$	5.0 [kHz]	0	6-26
				37~75kW $0.7 \sim 4[\mathrm{kHz}]$	4.0 [kHz$]$		
				90~280kW $0.7 \sim 3[\mathrm{kHz}]$	3.0 [kHz]		
				315~450kW $0.7 \sim 2[\mathrm{kHz}]$	2.0 [kHz]		
FU2-49	9331	PWM Type Selection	$\begin{gathered} \text { PWM } \\ \text { Technique } \end{gathered}$	0 (Normal)	0 (Normal)	X	6-26
				1 (Low leakage)			
FU2-52	9334	Safety Stop Dec. Rate	Dec Rate	1.0-100.0 [sec]	100.0 [sec]	-	6-26
FU2-53	9335	Safety Stop Output Dec. Rate	safety_perc	2-500	21	-	6-26
FU2-60	933C	Control Mode Selection	Control Mode	0 (V/F)	0 (V/F)	X	6-27
				1 (Slip compen)			
				2 (Sensorless)			
FU2-61	933D	Auto Tuning Selection	AutoTuneEnbl	0 (No)	0 (No)	X	6-28
				(Static)			

Chapter 5 - Parameter List

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	$\begin{array}{\|c\|} \hline \text { Adj. } \\ \text { During } \\ \text { Run } \\ \hline \end{array}$	Page
FU2-62	933 E	Stator Resistance of Motor	\%Rs	0.01-20 [\%]	4 [\%]	X	6-28
FU2-63	933F	$\begin{array}{\|c\|c\|} \hline \text { Leakage Inductance of } \\ \text { Motor } \\ \hline \end{array}$	\%Lsigma	0.01-100[\%]	12 [\%]	X	6-28
$\begin{gathered} \text { FU2-64 } \\ (16) \\ \hline \end{gathered}$	9340	Pre-excitation Time	PreEx time	0 to 60 [sec]	1 [sec]	X	6-28
FU2-67	9343	Manual/Auto Torque Boost Selection	Torque boost	0 (Manual) 1 (Auto)	0 (Manual)	X	
FU2-68	9344	Torque Boost in Forward Direction	Fwd boost	$0.75 \sim 90 \mathrm{~kW}$ $110 \sim 450 \mathrm{~kW}$ 0 to 15 $[\%]$	$\begin{aligned} & 2.0[\%] \\ & \hline 1.0[\%] \\ & \hline \end{aligned}$	X	6-29
FU2-69	9345	Torque Boost in Reverse Direction	Rev boost	$0.75 \sim 90 \mathrm{~kW}$ 0 to 15 $[\%]$ $110 \sim 450 \mathrm{~kW}$ $[\%$	$\frac{2.0[\%]}{1.0[\%]}$	X	
FU2-80	9350	Power On display	PowerOn Disp	0 to 12	0	0	6-30
FU2-81	9351	User Select	User Disp	Votage Watt	Voltage	0	6-30
FU2-82	9352	Sottware Version	iP5A S/W Ver	Ver X.X	Ver X.X		6-30
FU2-83	9353	Last Trip Time	LastTripTime	X:XX:XX:XX:XX:X		X	6-30
FU2-84	9354	Power On Time	On-time			X	
FU2-85	9355	Run-time	Run-time			X	
FU2-87	9357	Power Set	Power Set	0.1~400\%	100	0	6-31
FU2-90	935A	Parameter Display	Para. disp	0 Default 1 Allipara) 2 (Diff Para)	0 (Defaut)	0	6-31
FU2-91	935B	Read Parameter	Para. Read	$\begin{array}{\|l\|l\|} \hline 0 & \text { No }) \\ \hline 1 & \text { Yes } \\ \hline \end{array}$	0 (No)	X	6-31
FU2-92	935C	Write Parameter	Para. Write	$\begin{gathered} 0 \\ \hline 1 \\ \hline 1 \end{gathered}$	0 (No)	X	6-31
FU2-93	935D	Initialize Parameters	Para. Init		0 (No)	X	6-31
FU2-94	935E	Parameter Write Protection	Param. Lock	0 to 9999	0	0	6-32
FU2-95	935F	Parameter Save	Param. save	0 1	0 (No)	X	6-32

\square The gray-highlighted codes are hidden parameters and will appear when the reated functions are to be set.
(12) FU2-8 is displayed when FU2-07 is set to [$1 \sim 10 \mathrm{sec}$].
13) FU2-11 is displayed when FU2-10 is set to [Yes].
(15) FU2-26 is displayed when FU2-25 [Retry number] is set to [$1 \sim 10$].
16) FU2-64 is displayed when FU2-60 is set to [Sensorless].

Table 1) Switching frequency and fatory default value for each inverter capacity

Inverter Capacity	Setting Range	Factory Default
$0.75 \sim 22 \mathrm{~kW}$	$0.7 \sim 15[\mathrm{kHz}]$	$5.0[\mathrm{kHz}]$
30 kW	$0.7 \sim 10[\mathrm{kHz}]$	$4.0[\mathrm{kHz}]$
$37 \sim 75 \mathrm{~kW}$	$0.7 \sim 4[\mathrm{kHz}]$	$3.0[\mathrm{kHz}]$
$10 \sim 280 \mathrm{~kW}$	$0.7 \sim 3[\mathrm{kz}]$	$2.0[\mathrm{kHz}]$
$90 \mathrm{~kW} / 315 \sim 450 \mathrm{~kW}$	$0.7 \sim 2[\mathrm{kHz}]$	

Chapter 5 - Parameter List

CODE	Comm Addr	Description	$\begin{aligned} & \text { LCD } \\ & \text { Keypad } \\ & \text { Display } \end{aligned}$	Setting Range	Factory Default	Adj. During Run	Page
1/0-00	9400	Jump to desired code	Jump code	1 to 98	1	0	6-33
$\begin{array}{\|c} \hline 10-01 \\ (17) \\ \hline \end{array}$	9401	Filtering Time Constant for V1 Signal Input	V1 Filter	0 to 9999 [msec]	10 [msec]	0	
/10-02	9402	V1 Input Minimum Voltage	V1 volt x 1	0 to 12[V]	0.00 [V]	0	
I/O-03	9403	Frequency Corresponding to V1 Input Minimum Voltage	V1 Freqy 1	$\begin{array}{\|c\|} \hline 0 \text { to FU1-30 [Hz] } \\ \hline 0 \text { to } 100.00\left[{ }^{[* *}[(18)\right. \\ \hline \end{array}$	$0.00[\mathrm{~Hz}]$	0	6-33
1/0-04	9404	V1 Input Minimum Voltage	V1 volt x2	0 to 12[V]	10 [V]	0	
I/0-05	9405	V1 Input Maximum Voltage	V1 Freq y2	0 to FU1-30 [Hz]		0	
/10.06	9406	Filtering Time Constant for S Signal Input	\| Filter	0 to 9999 [msec]	10 [msec]	0	
1/0-07	9407	1 Input Minimum Current	I curr $\times 1$	0 to 20 [mA]	4 [mA]	0	
I/0-08	9408	Frequency Corresponding to I Input Minimum Current	1 Freqy 1	$\begin{array}{\|c\|} \hline 0 \text { to FU1-30 [Hz] } \\ \hline 0 \text { to } 100.00\left[^{[* *}[(18)\right. \\ \hline \end{array}$	$0.00[\mathrm{~Hz}]$	0	6-33
1/0-09	9409	Filtering Time Constant for I Signal Input	I curr x2	0 to 20 [mA]	20 [mA]	0	
//0-10	940A	Frequency Corresponding to I I Input Maximum Current	1 Freq y2	$\begin{array}{\|c\|} \hline 0 \text { to FU1-30 [Hz] } \\ \hline 0 \text { to } 100.00\left[{ }^{[* *}\right](18) \\ \hline \end{array}$	$\begin{array}{r} 60.00 \\ {[\mathrm{~Hz}]} \\ \hline \end{array}$	0	
//0-11	940B	Pulse input method	P Pulse set	($A+B$)	1 (A)	0	
				(A)			
/0-12	940C	Pulse input filter	P filter	0 to 9999 [msec]	10 [msec]	0	
/0-13	940D	Pulse input Minimum frequency	P pulse x 1	0 to 10 [kHz$]$	0 [kHz$]$	0	
//0-14	940E	Frequency corresponding to $/ / 0-13$ Pulse input Minimum frequency	P freq y1	$\begin{array}{\|c\|} \hline 0 \text { to FU1-30 [Hz] } \\ \hline 0 \text { to } 100.00\left[{ }^{[* *}\right](18) \\ \hline \end{array}$	$0[\mathrm{~Hz}]$	0	6-34
/0-15	940F	Pulse input Minimum frequency	P pulse $\times 2$	0 to 100 [kHz]	10 [kHz$]$	0	
//0-16	9410	Frequency corresponding to $/ / 0-15$ Pulse input Maximum frequency	P freq y2	$\begin{array}{\|c\|} \hline 0 \text { to FU1-30 [Hz] } \\ \hline 0 \text { to } 100.00{ }^{[* *}[(18) \\ \hline \end{array}$	$\begin{aligned} & 60.00 \\ & {[H z]} \\ & \hline \end{aligned}$	0	
//0-17	9411	Criteria for Analog Input Signal Loss	Wire broken	$\begin{array}{\|l\|l\|} \hline 0 & \text { (None) } \\ \hline 1 & \text { (half of } \times 1) \\ \hline 2 & \text { (below } \times 1) \\ \hline \end{array}$	0 (None)	0	
//0-18	9412	Operating selection at Loss of Freq. Reference	Lost command	0 (None) 1 (FreeRun) 2 (Stop) 3 (Protection)	0 (None)	0	6-35
//0-19	9413	Waiting Time after Loss of Freq. Reference	Time out	0.1 to 120 [sec]	1.0 [sec]	0	
//0-20	9414	Programmable Digital Input Terminal 'M1' Define	M1 Define	$\begin{aligned} & 0 \text { (Speed-L) } \\ & 1 \text { (Speed-M) } \end{aligned}$	$\begin{array}{\|c} \hline 0 \\ \text { (Speed- } \\ \text { L) } \end{array}$	0	6-36

CODE	Comm	Description	LCD Keypad Display	Setting Range	Factory Default	$\begin{gathered} \text { Adj. } \\ \text { During } \\ \text { Run } \end{gathered}$	Page
				2 (Speed-H) 3 (XCEL-L) 4 (XCEL-M) 5 (XCEL-H) 6 (Dc-brake) 7 (2nd Func) 8 (Exchange) 9 (- Reserved -) 10 (Up) 11 (Down) 13 (Ext Trip) 14 (Pre-Heat) 15 (iTerm Clear) 16 (Open-loop) 17 (LOC/REM) 18 (Analog hold) 19 (XCEL stop) 20 (P Gain2) 21 -Reserved- 22 (Interlock1) 23 (Interlock2) 24 (Interlock3) 25 (Interlock4) 26 (Speed_X) 27 (RST) 28 (BX) 29 (JOG) 30 (FX) 31 (RX) 32 (ANA_CHG) 33 (Ext FID Run) 34 (Up/Dn Clr)			
1/0-21	9415	Programmable Digital Input Terminal 'M2' Define	M2 define		$\begin{gathered} 1 \text { (Speed- } \\ M \text { M) } \\ \hline \end{gathered}$	0	
1/0-22	9416	Programmable Digital Input Terminal 'M3' Define	M3 define		$\begin{gathered} 2 \text { (Speed- } \\ \text { H) } \end{gathered}$	0	
1/0-23	9417	Programmable Digital Input Terminal 'M4' Define	M4 define		27 (RST)	0	
1/0-24	9418	Programmable Digital Input Terminal 'M5' Define	M5 define	Same as I/0-20	$\begin{array}{\|c} \hline 12 \text { (Stop/ } \\ 3 \text {-wire) } \\ \hline \end{array}$	X	
1/0-25	9419	Programmable Digital Input Terminal 'M6' Define	M6 define		29 (JOG)	0	
1/0-26	941A	Programmable Digital Input Terminal 'M7' Define	M7 define		30 (FX)	0	6-36
10-27	941B	Programmable Digital Input Terminal	M8 define	Same as I/O-20	31 (RX)	0	

Chapter 5 - Parameter List

CODE	Comm. Addr	Description	$\begin{aligned} & \hline \text { LCD } \\ & \text { Keypad } \\ & \text { Display } \end{aligned}$	Setting Range	Factory Default	$\begin{array}{\|l} \hline \text { Adj. } \\ \text { During } \\ \text { Run } \end{array}$	Page
		'M8' Define					
//0-28	941 C	Terminal Input Status	In status	$00000000000 /$ 11111111111	$\begin{gathered} 0000000 \\ 0000 \\ \hline \end{gathered}$	*	
1/0-29	941D	Filtering Time Constant for Programmable Digital Input Terminals	Ti Filt Num	2 to 1000 [msec]	15	0	
$\begin{gathered} 1 / 0-30 \\ (19) \end{gathered}$	941E	Jog Freq-uency Setting	Jog Speed	0 to FU1-30	$10[\mathrm{~Hz}]$	0	6-39
1/0-31	941F	Step Frequency 4	PresetSpd-4		$40[\mathrm{~Hz}]$	0	
1/0-32	9420	Step Frequency 5	PresetSpd-5		$50[\mathrm{~Hz}]$	0	
1/0-33	9421	Step Frequency 6	PresetSpd-6		$40[\mathrm{~Hz}]$	0	
1/0-34	9422	Step Frequency 7	PresetSpd-7		$30[\mathrm{~Hz}]$	0	
1/0-35	9423	Step Frequency 8	PresetSpd-8		$20[\mathrm{~Hz}]$	0	
1/0-36	9424	Step Frequency 9	PresetSpd-9		$10[\mathrm{~Hz}]$	0	
1/0-37	9425	Step Frequency 10	PreseiSpd-10		$20[\mathrm{~Hz}]$	0	
1/0-38	9426	Step Frequency 11	PreseiSpd-11		$30[\mathrm{~Hz}]$	0	
1/0-39	9427	Step Frequency 12	PreseiSpd-12		$40[\mathrm{~Hz}]$	0	
1/0-40	9428	Step Frequency 13	PreseiSpd-13		$50[\mathrm{~Hz}]$	0	
//0-41	9429	Step Frequency 14	PreseiSpd-14		$40[\mathrm{~Hz}]$	0	
1/0-42	942A	Step Frequency 15	PreseiSpd-15		$30[\mathrm{~Hz}]$	0	
1/0-50	9432	Acceleration Time 1 (for Step speed)	Acc time-1	0 to 6000 [sec]	20 [sec]	0	6-40
//0-51	9433	Deceleration Time 1 (for Step speed)	Dec time-1			0	
$\begin{gathered} 10-52 \\ (20) \end{gathered}$	9434	Acceleration Time 1 (for Step speed)	Acc time-2	0 to 6000 [sec]	30 [sec]	0	
1/0-53	9435	Deceleration Time 2	Dec time-2			0	
1/0-54	9436	Acceleration Time 3	Acc time-3		[sec]	0	
1/0-55	9437	Deceleration Time 3	Dec time-3			0	
1/0-56	9438	Acceleration Time 4	Acc time-4			0	
1/0-57	9439	Deceleration Time 4	Dec time-4		[sec]	0	
1/0-58	943A	Acceleration Time 5	Acc time-5			0	
1/0-59	943B	Deceleration Time 5	Dec time-5		40 [sec]	0	
/10-60	943 C	Acceleration Time 6	Acc time-6		30 [sec]	0	
/10-61	943D	Deceleration Time 6	Dec time-6		$30[\mathrm{sec}]$	0	
1/0-62	943E	Acceleration Time 7	Acc time-7			0	
1/0-63	943F	Deceleration Time 7	Dec time-7		$20[\mathrm{sec}]$	0	
//0-70	9446	SO output selection	SO mode	0 (Frequency)	$\left[\begin{array}{c} 0 \\ (\text { Frequen } \\ \text {-cy) } \end{array}\right.$	0	6-41
				1 (Current)			
				2 (Voltage)			
				3 (DC link Vtg)			
				4 (Ext PID Out)			
/0-71	9447	SO output adjustment	SO adjust	10 to 200 [\%]	100 [\%]	0	6-41
1/0-72	9448	S1 output selection	S1 mode	Same as I/0-70	2 (Votage)	0	
1/0-73	9449	S1 output adjustment	S1 adjust	10 to 200 [\%]	100 [\%]	0	

CODE	Comm. Addr	Description	$\begin{aligned} & \hline \text { LCD } \\ & \text { Keypad } \\ & \text { Display } \\ & \hline \end{aligned}$	Setting Range	Factory Default	Adj. During Run	Page
I/0-74	944A	Frequency Detection Level	FDT freq	0 to FU1-30 [Hz]	$\begin{aligned} & 30.00 \\ & {[\mathrm{~Hz}]} \end{aligned}$	0	6-42
1/0-75	944B	Frequency Detection Bandwidth	FDT band		$\begin{aligned} & 10.00 \\ & {[\mathrm{~Hz}]} \end{aligned}$	0	6-42
1/0-76	944C	Programmable Digital Output Terminal Define (Aux terminal)	RlyOut 1 Def	0 ((NONE) 1 (FDT-1) 2 (FDT-2) 3 (FDT-3) 4 (FDT-4) 5 (FDT-5) 6 (OL) 7 (IOL) 8 (Stall) 9 (OV) 10 (LV) 11 (OH) 12 (Lost Command) 13 (Run) 14 (Stop) 15 (Steady) 16 (INV line) 17 (COMM line) 18 (SpeedSearch) 19 (Ready) 20 (MMC) 21 (CriticalTrip)	$\begin{gathered} 0 \\ \text { (NONE) } \end{gathered}$	0	6-42
I/0-77	944D	Programmable Digital Output Terminal Define	Aux mode2	Same as I/0-76	$\begin{gathered} 0 \\ (\text { NONE }) \end{gathered}$	0	
1/0-78	944E	Programmable Digital Output Terminal Define	Aux mode3			0	
1/0-79	944F	Programmable Digital Output Terminal Define	Aux mode4			0	
1/0-80	9450	Fault Output Relay Setting (3A, 3B, 3C)	Relay mode	000 to 111 [bit]	010 [bit]	0	6-46
I/0-81	9451	Terminal Output Status	Out status	$00000000 /$ 11111111	00000000	*	6-46
1/0-82	9452	Waiting time after Fault Output Relay On	Relay On	0 to 9999	0	X	6-47
1/0-83	9453	Waiting time after Fault Output Relay Off	Relay Off			X	
I/0-84	9454	Fan Con Sel (37 ~ 90kW)	Fan Con. Sel	0 (Power On Fan) 1 (Run Fan) 2 (Temper-Fan)	0 (Power On Fan)	X	6-47
1/0-85	9455	Fan Temp (37 ~ 90kW)	Fan Temp	0 to 70 [$\left.{ }^{\circ} \mathrm{C}\right]$	70 [${ }^{\circ} \mathrm{C}$]	0	6-47
1/0-86	9456	Input User Unit Selection	Unit Sel	$\begin{aligned} & 0 \text { (Percent) } 1 \text { (Bar) } \\ & 2 \text { (mBar) } 3 \text { (kPa) } \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ \text { (Percent) } \\ \hline \end{array}$	X	6-47

CODE	Comm. Addr	Description	$\begin{array}{c\|} \hline \text { LCD } \\ \text { Keypad } \\ \text { Display } \\ \hline \end{array}$	Setting Range	Factory Default	Adj. During Run	Page
				4 (PSI) 5 (Pa)			
1/0-87	9457	Unit Maximum Selection	Unit Max Val	1.0 to 999.9[\%]	100[\%]	X	
1/0-90	945A	Inverter Number	Inv No.	1 to 250	1	0	6-48
$\begin{gathered} I / 0-91 \\ (22) \end{gathered}$	945B	Baud Rate Selection	Baud rate	0 (1200 bps)	$\begin{gathered} 3 \text { (9600 } \\ \text { bps) } \end{gathered}$	0	6-37
				1 ${ }^{1}$ (2400 bps)			
				2 (4800 bps)			
				$3{ }^{3}$ (9600 bps)			
				4 (19200 bps)			
				5 (38400 bps)			
I/0-92	945C	Operating method at loss of freq. reference	COM Lost Cmd	0 (None)	0 (None)	0	6-48
				1 (FreeRun)			
				2 (Stop)			
				3 (Lost Preset)			
1/0-93	945D	Waiting time after loss of freq. reference	COM Time Out	0.1 to 120 [sec]	1.0 [sec]	0	
1/0-94	945E	Communication Response Delay time	Delay Time	2 to 1000 [msec]	5 [msec]	0	6-48
I/0-95	945F	A or B contact	In No/Nc Set	$\begin{aligned} & \hline 00000000000 \\ & / 1111111111 \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline 0000000 \\ 0000 \\ \hline \end{array}$	X	6-49
1/0-96	9460	Input time	In CheckTime	1 to 1000	1 [msec]	X	6-49
1/0-97	9461	Overheat trip selection	OH Trip Sel	000 to 111 [bit]	010 [bit]	X	
1/0-98	9462	Motor overheat trip temperature	$\begin{array}{\|c\|} \hline \text { MotTripTe } \\ \mathrm{mp} \end{array}$	0 to 255 [$\left.{ }^{\circ} \mathrm{C}\right]$	$110\left[{ }^{\circ} \mathrm{C}\right]$	X	6-49
$\begin{gathered} \hline 1 / 0-98 \\ (23) \\ \hline \end{gathered}$	9463	Lost Cmd Pre freq Setting	Lost Preset	0 to $60[\mathrm{~Hz}]$	0	0	6-50

* \square The gray-highlighted codes are hidden parameters and will appear when the related functions are to be set.
(17) When DRV-04 is set to either V1, V1S, Ior V1+I or Pulse, only selected item codes are displayed in $/ 0-1 \sim / / 0-19$.
(18) I $/ 0-3,5,8,10,14,16$ is displayed $0 \sim 100.00$ [*] when App-02 is set to [proc PI mode] or APP-80 is set to [Ext PI mode] and APP-06 PID Feedback Signal Selection is set to one of I, VI, Pulse, atter then, one of $/ \mathrm{C}-86 \sim / / 0-88$ is set to percentage, Bar, mBar, KPa, Pa except for Speed. Unit will be changed to selected unit. Only user unit displayed when APP-02 or APP-80 is set to [Yes], after APP-06 is set to one of I, V, Pulse, after then one of $/ \mathrm{O}-86 \sim / \mathrm{O}-88$ is set to either speed, percentage, Bar, mBar, kPa , Pa.
(19) //O-30 ~ / / -3 34 displayed only when one of $/ / 0-20 \sim / / O-27$ is set to e either JOG, Speed_L, Speed_M, Speed_H. $1 / 0-35 \sim / / 0-42$ displayed only when one of $/ 0-20 \sim / / 0-27$ is set to Speed X.
(20) / $/ 0-52 \sim$ ~ $/ 0-63$ displayed only when one of $/ / 0-20 \sim / / 0-27$ is set to either XCEL_L, XCEL_M, XCEL_H.
(22) 38400 bps can be set only when the external communication option card is installed.
(23) I/O-99 displayed only when one of DRV-04 is set to [V1, V1S, I, V1+I, Pulse].

Chapter 5 - Parameter List
[APP GROUP]

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	$\begin{array}{\|c} \hline \text { Adj. } \\ \text { During } \\ \text { Run } \\ \hline \end{array}$	Page
APP-00	9700	Jump to Desired Code \#	Jump code	1 to 80	1	0	6-51
APP-01	9701	Application Mode Selection	App mode	$\begin{array}{ll} 0 & \text { (None) } \\ 1 & \text { (MMC) } \\ \hline \end{array}$	0 (None)	X	6-51
APP-02	9702	PID Operation Selection	Proc PI mode	$\begin{array}{ll} 0 & (\text { (No) } \\ 1 & \text { (Yes) } \end{array}$	0 (No)	X	6-51
$\begin{array}{\|c} \hline \text { APP-03 } \\ (25) \end{array}$	9703	PID F Gain Selection	PID FFwd-Gn	0 to 999.9[\%]	0.0 [\%]	0	6-57
$\begin{array}{\|c\|} \hline \text { APP-04 } \\ (26) \\ \hline \end{array}$	9704	$\begin{array}{c}\text { PID Auxiliary Reference Mode } \\ \text { Selection }\end{array}$	Aux Ref Enbl	$\begin{array}{ll} 0 & (\text { No }) \\ 1 & \text { (Yes) } \end{array}$	0 (No)	X	6-57
APP-05 (27)	9705	PID Auxiliary Reference Signal Selection	Aux Ref Sel	0 (Keypad-1) 1 (Keypad-2) 2 (V1) 3 (V1S) 4 (I) 5 (V1+I) 6 (Pulse) 7 (Int. 485) 8 (Ext. PID)	2 (V1)	X	6-57
APP-06	9706	PID Feedback Signal Selection	PID Fbk Src	$\begin{array}{ll} 0 & (\text { (l) } \\ 1 & \text { (V1) } \\ 2 & \text { (Pulse) } \end{array}$	0 (I)	X	6-57
APP-07	9707	Meter I Maximum Value	Meter I Max	0 to 20.00 mA	20.00 mA	0	6-57
APP-08	9708	Meter V Maximum Value	Meter V Max	0 to 12.00 V	10.00 V	0	6-57
APP-09	9709	Meter P Maximum Value	Meter P Max	0 to100.0kHz	100.0 kHz	0	6-57
APP-11	970B	P Gain for PID Control	PID P Gain	0 to 999.9 [\%]	1.0 [\%]	0	6-58
APP-12	970 C	I Time for PID Control	PID ITime	0 to 32.0 [sec$]$	10.0 [sec$]$	0	6.58
APP-13	970D	D Time for PID Control	PID D Time	0 tot00 [msec]	0.0 [msec]	0	6-58
APP-14	970E	High Limit Frequency for PID Control	PID Hi Limit	0.00 to FN1-30	$60.00[\mathrm{~Hz}]$	0	
APP-15	970F	Low Limit Frequency for PID Control	PID LowLimit	FN1-32 to APP- 10	0.5 [Hz]	0	6-58
APP-16	9710	PID Output Gain	PID OutScale			X	
APP-17	9711	PID P2 Gain	PID P2 Gain	0.0 0 999.9 [\%]	100.0 [\%]	X	
APP-18	9712	P Gain Scale	P Gain Scale	0.0 to 100.0 [\%]		X	6-58
APP-19	9713	PID Output Inverse	PID Outhvrt	$\begin{array}{ll} 0 & (\mathrm{No}) \\ 1 & \text { (Yes) } \end{array}$	0 (No)	x	6-58
APP-20	9714	PID U curve feedback select	PID U Fbk	$\begin{array}{ll} 0 & \text { (No) } \\ 1 & \text { (Yes) } \end{array}$	0 (No)	X	6-58
APP-23	9717	PrePID Reference Frequency	PrePID Frea	0 to FU1-30	0	0	
APP-24	9718	PrePID Exit Level	PrePID Exit	0 to 100.0\%	0	0	6-59
APP-25	9719	PrePID Stop delay	PrePID Dly	O to 9999	600	0	

Chapter 5 - Parameter List

| CODE | Comm.
 Addr | Description | LCD Keypad
 Display | Setting Range | Factory
 Default | Adj.
 During
 Run |
| :--- | :---: | :---: | :---: | :--- | :---: | :---: | :---: |

Chapter 5 - Parameter List

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
APP-59	973B	Delay Time before Stopping Aux Motor	Aux stop DT	0.0 to $999.9[\mathrm{sec}]$	5.0 [sec]	0	6-63
APP-60	973C	Accel time when the number of pump decreases	Pid AccTime	0 to 600.0 [sec]	2.0 [sec]	0	6.63
APP-61	973D	Decel time when the number of pump increases	Pid DecTime			0	6-64
APP-62	973E	PID Bypass Selection	Regul Bypass	$\begin{array}{ll} 0 & (\text { No) } \\ 1 & \text { (Yes) } \end{array}$	0 (No)	X	6-64
APP-66	9742	Auto Change Mode Selection	AutoCh_Mode	O(EXCH_NONE), 1 (AUX EXCH), 2 (MAIN EXCH)	$\begin{array}{\|l\|} \hline 0(E X C H \\ \text { NONE) } \end{array}$	0	6-65
APP-67	9743	Auto Change Time	AutoEx-intv	00:00 to 99:00	72:00	0	$6-65$
APP-68	9744	Auto Change Freq	AutoEx-Freq	FN1-32 to FN1$30[\mathrm{~Hz}]$	$20.0[\mathrm{~Hz}]$	0	6-65
APP-69	9745	Inter-Lock Selection	Inter-lock	0 (N)	No)	0	$6-66$
APP-71	9747	Pressure difference for Aux motor Start	Aux Stt Diff	0 to100\%	2[\%]	0	6-68
APP-72	9748	Pressure difference for Aux motor Stop	Aux Stp Diff			0	6-68
APP-80	9750	Ext PID Operation Selection	Ext PIMode	$\begin{array}{\|ll} \hline 0 & \text { (No) } \\ 1 & \text { (Yes) } \\ \hline \end{array}$	0 (No)	X	6-68
APP-81 (30)	9751	Ext PID Reference Signal Selection	ExtPI RefSel		3(Keypad)	X	6-68
APP-82	9752	Ext PID Reference Level	Ext PI Ref \%	Oto 100.00 [\%]	50.00 [\%]	X	6-68
APP-83	9753	Ext PID Feedback Signal Selection	ExtPI FbkSel	$\begin{aligned} & 0 \text { (I) } \\ & 1 \text { (V1) } \\ & 2 \text { (Pulse) } \end{aligned}$	0 (I)	x	6-68
APP-85	9755	P Gain for ExtPID	ExtPID Pgain	0 to 999.9 [\%]	1.0 [\%]	X	6-68
APP-86	9756	1 Time for ExtPID	ExtPID ltime	0 to 32.0 [sec$]$	$10.0[\mathrm{sec}]$	X	6-68
APP-87	9757	D Time for ExtPID	ExtPID Dtime	0 to 2000 [msec]	0 [msec]	X	6-68
APP-88	9758	High Limit Frequency for ExtPID Control	ExtPID Lmt-H	O to 100.00 [\%]	100.00 [\%]	X	6-68
APP-89	9759	Low Limit Frequency for ExtPID Control	ExtPID Lmt-L	O to 30.00 [\%]	0 [\%]	X	6-68
APP-90	975A	ExtPID Output Scale	ExtPID Scale			X	6-68
APP-91	975B	ExtPID P2 Gain	ExtPI P2Gain		100.0 [\%]	X	6-68
APP-92	975C	ExtPID P Gain Scale	ExtPI PScale	0 to 100.0		X	6-68
APP-93	975D	ExtPID F Gain	ExtPID F-gain	0 to 999.9 [\%]	0.0 [\%]	0	6-68
APP-95	975F	ExtPID Output Inverse	ExtPI Outhn	$\begin{array}{ll} \hline 0 & \text { (No) } \\ 1 & \text { (Yes) } \end{array}$	0 (No)	X	6-68

Chapter 5 - Parameter List

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
APP-97	9761	ExPID Loop Time	ExtPI LoopTm	50 to $200[\mathrm{msec}]$	100 $[\mathrm{msec}]$	X	6 6-68

$* \square$ The gray highlighted codes are hidden parameters and will appear when the related functions are to be set.
(25) Only APP-03 ~ APP-17 displayed when APP-02 is set to [Yes].

Only APP-03 ~ APP-17 and APP-63 ~ APP-65 displayed when APP-2 is set to [Yes].
(26) If APP-04 Aux Ref Mode is no set, DRV-04 setting will be reference of process PID and APP -05 setting will be ignored.
(27) If APP-04 is set, APP-04 will appear and APP -05 setting value will be reference of process PID, DRV-04 setting will be ignored.
(28) Only APP-30 ~ APP-39 displayed only when one of I/O-20 ~ / /O-27 is set to either "2nd Func".
(29) Only APP-40 ~ APP-71 displayed when APP-01 is set to [MMC].
(30) Only APP-81 ~ APP-97 displayed when APP-80 Ext PI mode is set to [Yes].
[EXT GROUP]

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
EXT-00	9500	Jump Code	Jump code	1 to 45	1	0	Refer to the corresponding option manual
EXT-01	9501	Type of SUB Board	Sub B/D	Sub-E	,		
EXT-40	9528	Current Output Terminal 1(CO1) Selection	AM1 mode	Frequency Current Voltage DC link Vtg Ext PID Out	Frequency	0	
EXT-41	9529	Adjust Gain of Current Output Terminal 1(CO1)	AM1 adjust	10-200 [\%]	100 [\%]	0	
EXT-42	952A	Adjust Offset of Current Output Terminal 1(CO1)	AM1 Offset	0-100 [\%]	0 [\%]	0	
EXT-43	952B	Current Output Terminal 2(CO2) Selection	AM2 mode	Frequency Current Voltage DC link Vtg Ext PID Out	DC link Vtg	0	
EXT-44	952 C	Adjust Gain of Current Output Terminal 2(CO2)	AM2 adjust	10-200 [\%]	100 [\%]	0	
EXT-45	952D	Adiust Offset of Current Output Terminal 2 (CO2)	AM2 Offset	0-100 [\%]	0 [\%]	0	
* Only the above EXT group displayed when the corres * Refer to the SUB board option manual for details.							

[COM GROUP]

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	Adj. During Run	Page
COM-00	9600	Jump Code	Jump code	1 to 60	1	0	
COM-01	9601	Type of SUB Board	Opt B/D	RS485 DeviceNet Profibus BACnet LonWork	*	*	
COM-02	9602	Option Mode	Opt mode	None Command Freq Cmd + Frea	None	x	
COM-03	9603	Option Version	Opt Version	Ver X.X	Ver X.X	*	
COM-13	960D	Device Net Input Instance	In Instance	$\begin{aligned} & \hline 70 \\ & 71 \\ & 110 \\ & 111 \\ & \hline \end{aligned}$	70	X	
COM-17	9611	PLC Station ID	Station ID	0 to 63	1	0	
COM-20	9614	Profi MAC ID	Profi MAC ID	1 to 127	1	0	
COM-30	961E	Output Num	Output Num	0 to 8	3	0	$\begin{aligned} & \text { reter } \\ & \text { the } \end{aligned}$
COM-31	961F	Output 1	Output 1			0	corres-
COM-32	9620	Output 2	Output 2			0	pondi-
COM-33	9621	Output 3	Output 3			0	ng
COM-34	9622	Output 4	Output 4			0	option
COM-35	9623	Output 5	Output 5	0000-FFFF (HEX)	OOOA(HEX)	0	manual
COM-36	9624	Output 6	Output 6			0	
COM-37	9625	Output 7	Output 7			0	
COM-38	9626	Output 8	Output 8			0	
COM-40	9628	Input Num	Input Num	0 to 8	2	0	
COM-41	9629	Input 1	Input 1		0005(HEX)	0	
COM-42	962A	Input 2	Input 2		0006(HEX)	0	
COM-43	962B	Input 3	Input 3			0	
COM-44	962 C	Input 4	Input 4	-FFFF (HEX)		0	
COM-45	962D	Input 5	Input 5	-rFFP (HEX)	0000(HEX)	0	
COM-46	962E	Input 6	Input 6		O000(HEX)	0	
COM-47	962F	Input 7	Input 7			0	
COM-48	9630	Input 8	Input 8			0	
COM-60	963C	Parity/Stop	Parity/Stop	8None/1Stop 8None/2Stop 8Even/1Stop 80dd/1Stop	8None/1Stop	0	

CODE	Comm. Addr	Description	LCD Keypad Display	Setting Range	Factory Default	$\begin{array}{\|c\|} \hline \text { Adj. } \\ \text { During } \\ \text { Run } \end{array}$	Page
COM-61	963D	Opt Para-1	Opt Para-1	0 to FFFF	0	0	
COM-62	963E	Opt Para-2	Opt Para-2			0	
COM-63	963F	Opt Para-3	Opt Para-3			0	
COM-64	9640	Opt Para-4	Opt Para-4			0	
COM-65	9641	Opt Para-5	Opt Para-5			0	
COM-66	9742	Opt Para-6	Opt Para-6			0	
COM-67	9743	Comm UpDate	Comm UpDate	$\begin{aligned} & \hline(\mathrm{No}) \\ & (\mathrm{Yes}) \\ & \hline \end{aligned}$	0 (No)	X	

Only the above COM group displayed when the corresponding option board is installed.

* COM-61~66 parameter is used to LonWorks and BACnet communication.

CHAPTER 6 - TROUBLESHOOTING AND MAINTENANCE

6.1 Fault Display

When a fault occurs, the inverter turns off its output and displays the fault status in DRV-12. The last 5 faults are saved in FU2-01 through FU2-05 with the operation status at the instance of fault. Reset the inverter when a fault occurs.

Keypad Display	Protective Function	Description
Over Current Over Current 1	Over Current Protection	The inverter turns off its output when the output current of the inverter flows more than 200% of the inverter rated current. This may cause danger or damage the drive so it requires double protection.
Ground Fault	Ground Fault Protection	The inverter turns off its output when a ground fault occurs and the ground fault current is more than the internal setting value of the inverter. Over current trip function may protect the inverter when a ground fault occurs due to a low ground fault resistance.
Over Voltage	Over voltage protection	The inverter turns off its output if the DC voltage of the main circuit increases higher than the rated value when the motor decelerates or when regenerative energy flows back to the inverter due to a regenerative load. This fault can also occur due to a surge voltage generated at the power supply system.
Over Load	Current Limit Protection (Overload Protection)	The inverter turns off its output if the output current of the inverter flows at 120% of the inverter rated current.
Over Heat	Inverter Over Heat	The inverter turns off its output if the heat sink is over heated due to a damaged cooling fan or an foreign substance in the cooling fan.
E-Thermal	Electronic Thermal	The internal electronic thermal of the inverter determines the over heating of the motor. If the motor is overloaded the inverter turns off the output. The inverter cannot protect the motor when driving a multi-pole motor or when driving multiple motors, so consider thermal relays or other thermal protective devices for each motor. Overload capacity: 130% for 1 min
Ext. Trip	External Trip	Use this function if the user needs to turn off the output by an external trip signal. (Normal Open Contact) Inverter blocks the output to protect motor overload by detecting through this terminal.
Low Voltage	Low Voltage Protection	The inverter turns off its output if the DC voltage is below the detection level because insufficient torque or over heating of the motor can occurs when the input voltage of the inverter drops.
Over Current 2	IGBT Short	The inverter turns off the output if an IGBT short through or an output short occurs.

Keypad Display	Protective Function	Description
Output Phase Open	Output Phase open	The inverter turns off its output when the one or more of the output ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) phase is open. The inverter detects the output current to check the phase open of the output.
Input Phase Open	Input Phase Open	The inverter turns off its output if the one or more of the input (R, S, T) phase is open. The inverter detects the intput current to check the phase open of the input. If smaller load is used, it can not be detected.
BX	BX Protection (Instant Cut Off)	Used for the emergency stop of the inverter. The inverter instantly turns off the output when the BX terminal is turned ON , and returns to regular operation when the BX terminal is turned OFF. Take caution when using this function.
HW-Diag	Inverter H/W Fault	A fault signal is output when an error occurs to the control circuitry of the inverter. There are the Wdog error, the EEP error, Input phase open, NTC open and the ADC Offset for this fault.
COM Error CPU Error	Comm. Error	This fault is displayed when the inverter cannot communicate with the keypad.
Inv. OLT	Inverter Overload	The inverter turns off its output when the output current of the inverter flows more than the rated level (110% for 1 minute, 130% for 4 seconds).
NTC open	NTC Open	This fault is displayed when inverter internal NTC is opened.
$\begin{aligned} & \text { LOP } \\ & \text { LOR } \\ & \text { LOV } \\ & \text { LOI } \\ & \text { LOX } \end{aligned}$	Operating Method when the Frequency Reference is Lost	According to the I/O-92 [Operating method at loss of freq. reference] setting, there are three modes: None (continuous operation), Stop (decelerate to stop), and Free Run (free run to stop), LOP: Displayed when option frequency reference is lost. (DPRAM time out) LOR: Displayed when option frequency reference is lost. (Communication network fault) LOV: Displayed when 'V1' analog frequency reference is lost. LOI: Displayed when 'I' analog frequency reference is lost. LOX: Displayed when sub-board (V2, ENC) analog frequency reference is lost.
Lost cmd		This fault is diaplayed when I/O-18 sets to Protection.
Fuse Open	Fuse Open	This fault is displayed when inverter internal fuse is opened by over current. (applied above 37 kW products)
Output Fault Trip	No Motor Trip	Trip has occurred according to setting of FU1-57~59.
Keypad Open	Keypad FLT	Indicats wire is separated from keypad. It is displayed only DRV23 set to Fault.

To reset fault, Press RESET key, close RST-CM terminals or cycle the input power.
If a problem keep occur, please contact the factory or your local distributor.

6.1.1 Operation methods and fault display in case of frequency loss

- I/O-18 <Lost Command> is as below description.

1/O-18 set data	Description
None	Keep the operation because frequency command is lost. (Factory defautl)
FreeRun	Free Run to stop because frequency command is lost.
Stop	Deceleration to stop because frequency command is lost.
Protection	Lost Cmd Trip because frequency command is lost.

- Load display when command is lost

LCD display	Description
LOP	Displayed when option command is lost. (DPRAM Time out)
LOR	Displayed when option command is lost. (Abnormal communication network)
LOV	Displayed when V1 analog frequency command is lost.
LOI	Displayed when I analog frequency command is lost.
LOX	Displayed when sub board (V2, ENC) frequency is lost.

6.1.2 If you want to check the previous state of inverter trip occurred and inverter trip description

- Current faulty description

Code	Display	Description
DRV-7	Over Current	Displayed the current trip message. (Over current)

Use the PROG, Δ and ∇ key before pressing the RESET key to check the fault content(s) such as output frequency, output current, and whether the inverter was accelerating, decelerating, or in constant speed at the time of the fault occurred. Press the ENT key to escape.
Press the RESET key to save the trip history in FU2-01~05.

- Last fault history

1) This code displays up to five previous fault (trip) status of the inverter. The lowest numbered fault such as "Last trip 1" is the most recent. Previous state of inverter trip occurred and inverter trip description can be checked.
2) FU2-06 [Erase trips] initializes the FU2-01~05 [Last trip-x]. It becomes the value of factory default.

Code	LCD display	Description	
FU2-01	Last trip-1	Trip history 1	
FU2-02	Last trip-2	Trip history 2	
FU2-03	Last trip-3	Trip history 3	
FU2-04	Last trip-4	Trip history 4	
FU2-05	Last trip-5	Trip history 5	

6.1.3 Reset the trip (Abnormal inverter state)

There are 3 kinds of reset methods. Auto-restart number is initialized after reset the inverter.

1. Reset by [RESET] key in loader.
2. Cut off the RST-CM of terminal block of inverter control circuit.
3. Turn off the inverter power and turn on the inverter.

Protection furnction	LCD display	Description
Over Current 1 Protection	Over Current Over Current1 1	Inverter output cuts off when the inverter output exceeds 200\% of th rated current. It must be double protected because it can be damaged by Over Current.
Ground Fault Current Protection	Ground Fault	Inverter output cuts off when current above the prescribed amount flows due to earth in the inverter outputu part. Ground fault due to low ground resistor can be protective by over current trip.
Over Voltage Protection	Over Voltage	Inerter output cutss off when the DC current above the prescribed amount flows due to deceleration or regenerative energy. It can be occurred due to surge voltage from power system.

Fault Remedy

	Cause	Remedy
Over Current Protection 1	1)Acceleration/Deceleration time is too short compared to the GD2 of the load. 2) Load is larger than the inverter rating. 3) Inverter turns output on when the motor is free running. 4) Output short or ground fault has occurred. 5) Mechanical brake of the motor is operating too fast. 6) Components of the main circuit have overheated due to a faulty cooling fan.	1) Increase Accel/Decel time. 2) Increase inverter capacity. 3) Operate after motor has stopped. 4) Check output wiring. 5) Check mechani cal brake operation. 6) Check cooling fan. (Caution) Operating inverter prior to correcting fault may damage the IGBT.
Ground Fault Current Protection	1) Ground fault has occurred at the output wiring of inverter. 2) The insulation of the motor is damaged due to heat.	1) Investigate the output wiring of inverter. 2) Exchange motor.
Over Voltage Protection	1) Acceleration time is too short compared to the GD²f load. 2) Regenerative load at the output 3) Line voltage is high.	1) Increase deceleration time. 2) Use regenerative resistor option. 3) Check line voltage.
Current Limit Protection (Overload Protection)	1) Load is larger than the inverter rating. 2) Incorrect inverter capacity selected. 3) Set incorrect V/F pattern.	1) Increase capacity of motor and inverter. 2) Select correct inverter capacity. 3) Select correct V/F pattern.
Inverter Overheat	1) Cooling fan damaged or an foreign substance inserted. 2) Cooling system has faults. 3) Ambient temperature high.	1) Exchange cooling fans and/or eliminate foreign substance. 2) Check for foreign substances in the heat sink. 3) Keep ambient temperature under $40{ }^{\circ} \mathrm{C}$.
Electronic Thermal	2) Load is larger than inverter rating. 3) ETH level too low. 4) Incorrect inverter capacity selected. 5) Set incorrect V/F pattern. 6) Operated too long at low speeds.	1) Reduce load and/or running duty. 2) Increase inverter capacity. 3) Adjust ETH level to an appropriate level. 4) Select correct inverter capacity. 5) Select correct V/F pattern. 6) Install a cooling fan with a separate power supply.

Chapter 6 - Troubleshooting and Maintenance

Protective Function	Cause	Remedy
External Trip	External Trip has occurred.	Eliminate Trip at circuit connected to external trip terminal or remove external trip input.
Low Voltage Protection	1) Line voltage low. 2) Load larger than line capacity is connected to line. (welding machine, motor with high starting current connected to the commercial line) 3) Faulty magnetic switch at the input side of the inverter.	1) Check line voltage. 2) Increase line capacity. 3) Exchange magnetic switch.
Over Current 2	1) Short has occurred between the upper and lower IGBT. 2) Short has occurred at the output of the inverter. 3) Acceleration/Deceleration time is too short compared to the GD² of load.	1) Check IGBT. 2) Check output wiring of inverter. 3) Increase acceleration time.
	1) Faulty contact of magnetic switch at output. 2) Faulty output wiring	1) Check magnetic switch at output of inverter. 2) Check output wiring.
H/W Fault	1) Wdog error (CPU fault) 2) EEP error (memory fault) 3) ADC Offset (current feedback circuit fault)	1) Exchange inverter. 2) Check the input power wiring.
Communica tion Fault	1) Faulty connection between inverter and keypad 2) Inverter CPU malfunction	1) Check connector. 2) Exchange inverter.
Operating Method when the Speed Reference is Lost	LOP (Loss of reference from the Option), LOR (Remote) LOV (V1), LOI (I), LOX (Sub-V2, ENC)	Eliminate cause of fault.
Inverter Overload	1) Load is larger than inverter rating. 2) Incorrect inverter capacity selected.	1) Increase motor and/or inverter capacity. 2) Select correct inverter capacity.

Condition	Checking Point
The motor does not rotate.	1) Main circuit inspection : - Is the input (line) voltage normal? (Is the LED in the inverter is lit?) - Is the motor connected correctly? 2) Input signal inspection : - Check the operating signal input to the inverter. - Check the forward and the reverse signal input simultaneously to the inverter? - Check the command frequency signal input to the inverter. 3) Parameter setting inspection: - Is the reverse prevention (FU1-01) function set? - Is the Drive mode (DRV-03) set correctly? - Is the command frequency set to 0 ? 4) Load inspection : - Is the load too large or is the motor jammed? (Mechanical brake) 5) Other: - Is the alarm displayed on the keypad or is the alarm LED lit? (STOP LED blinks)
The motor rotates in opposite directions.	- Is the phase sequence of the output terminal U, V, W correct? - Is the starting signal (forward/reverse) connected correctly?
The difference between the rotating speed and the reference is too large.	- Is the frequency reference signal correct? (Check the level of the input signal) - Is the following parameter setting is correct? - Lower Limit Frequency (FU1-34), Upper Limit Frequency (FU1- 35), Analog Frequency Gain (I/O-1~10) - Is the input signal line influenced by external noise? (Use a shielded wire)
The Inverter does not accelerate or decelerate smoothly.	- Is the acceleration/deceleration time is set too short a period of time? - Is the load too large? - Is the Torque Boost (FU2-68, 69) value is too high that the current limit function and the stall prevention function do not operate?
The motor current is too high.	- Is the load too large? - Is the Torque Boost Value (manual) too high?
The rotating speed does not increase.	Is the Upper Limit Frequency (FU1-35) value correct? Is the load too large? Is the Torque Boost (FU1-68, 69) value too high that the stall prevention function (FU1-71) does not operate?
The rotating speed oscillates when the inverter is operating.	1) Load inspection: - Is the load oscillating? 2) Input signal inspection : - Is the frequency reference signal oscillating? 3) Other: - Is the wiring too long when the inverter is using V/F control? (over 500 m)

6.3 How to Check Power Components

1) Diode module and IGBT module check ($5.5 \sim 30 \mathrm{~kW}$)

Before checking the power components, be sure to disconnect AC Input supply and wait until the Main Electrolytic Capacitors (DCP-DCN) is discharged.

- Turn the power off and disconnect RST/UVW wiring.
- Determine whether inverter terminals (R,S,T, U, V, W, P1(or P2),N) are energized or not using a tester.
- Wait until the Main Electrolytic Capacitors (DCP-DCN) is discharged to a safe level.
- Enormous amount of value such as Mega will be displayed when Open.

When closed, the resistance value ranges from a few ohms to tens of Ω.
Sometimes, it seems to be closed due to electrolytic capacitors but soon to be displayed mega value resistance.

- The displayed value is not always the same according to modules and tester types but should be similar.
- Modules number and checking point

Module		Test polarity		Check value	Number	Test polarity		Check value
		+				+		
Diode	D1	R	DCP+	Closed	D4	R	N	Open
		DCP+	R	Open		N	R	Closed
	D2	S	DCP+	Closed	D5	S	N	Open
	D2	DCP+	S	Open		N	S	Closed
		T	DCP+	Closed	D6	T	N	Open
	D3	DCP+	T	Open		N	T	Closed
IGBT	Tr1	U	DCP	Closed	Tr4	U	N	Open
	Tr	DCP	U	Open		N	U	Closed
	Tr3	V	DCP	Closed	Tr6	V	N	Open
	Tr3	DCP	V	Open		N	V	Closed
	Tr5	W	DCP	Closed	Tr2	W	N	Open
	Tr	DCP	W	Open		N	W	Closed

2) Diode module and IGBT module check (37~ 90kW)

- Turn the power off and disconnect RST/UVW wiring.
- Determine whether inverter terminals (R,S,T, U, V, W, P1 (or P2), N) are energized or not using a tester.
- Wait until the Main Electrolytic Capacitors (DCP-DCN) is discharged to a safe level.
- Enormous amount of value such as Mega will be displayed when Open. When closed, the resistance value ranges from a few ohms to tens of Ω. Sometimes, it seems to be closed due to electrolytic capacitors but soon to be displayed mega value resistance.
- The displayed value is not always the same according to modules and tester types but should be similar.
- Modules number and checking point

Module		Test polarity		Check value	Number	Test polarity		Check value
		+				+	-	
Diode		R	DCP+	Closed	D4	R	N	Open
	D1	DCP+	R	Open		N	R	Closed
	D5	S	N	Open	D6	T	N	Open
	D5	N	S	Closed		N	T	Closed
IGBT	Tr1	U	DCP	Closed	Tr4	U	N	Open
	Tr1	DCP	U	Open		N	U	Closed
		V	DCP	Closed	Tr6	V	N	Open
	Tr3	DCP	V	Open		N	V	Closed
	Tr5	W	DCP	Closed	Tr2	W	N	Open
	Tr5	DCP	W	Open		N	W	Closed

6.4 Maintenance

The iP5A series is an industrial electronic product with advanced semiconductor elements. However, temperature, humidity, vibration and aging parts may still affect it. To avoid this, it is recommended to perform routine inspections.

6.4.1 Precautions

Be sure to remove the drive power input while performing maintenance.
Be sure to perform maintenance only after checking that the bus has discharged (The voltage between terminal P1-N (or P2-N) should be less than DC 30V). The bus capacitors in the electronic circuit can still be charged even after the power is turned off.
The correct output voltage can only be measured by using a rectifier voltage meter. Other voltage meters, including digital voltage meters, are likely to display incorrect values caused by the high frequency PWM output voltage of the drive.

6.4.2 Routine Inspection

Be sure to check the following before operation
The conditions of the installation location
The conditions of the drive cooling
Abnormal vibration or loud noise
Abnormal heating or discoloration

6.4.3 Periodic Inspection

Are there any loose bolt, nut or rust caused by surrounding conditions? If so, tighten them up or replace them.
Are there any deposits inside the drive-cooling fan? If so, remove using air gun.
Are there any deposits on the drive's PCB (Printed Circuit Boards)? If so, remove using air.
Are there any abnormalities in the various connectors of the drive's PCB? If so, check the condition of the connector in question.
Check the rotating condition of the cooling fan, the size and condition of the capacitors and the connections with the magnetic contactor. Replace them if there are any abnormalities.

6.4.4 Megger/Withstanding Voltage Test

Perform megger test after inverter wiring is disconnected. Test voltage should not be applied to the inverter. Megger test should be conducted only for the main circuit, not the control circuit. Use DC 500V megger. Dielectric test should not be conducted to the inverter. Otherwise, IGBT may be damaged.

6.4.5 Daily and Periodic Inspection Items

Inspection Location	Inspection Item	Inspection	Period		Inspection Method	Criterion	Measuring Instrument
All	Ambient Environment	Is there any dust? Is the ambient temperature and humidity adequate?	0		Refer to the precautions.	Temperature: -10~+40 no freezing. Humidity: Under 50\% no dew	Thermometer, Hygrometer, Recorder
	Equipment	Is there any abnormal oscillation or noise?	0		Use sight and hearing.	No abnormality	
	Input Voltage	Is the input voltage of the main circuit normal?	0		Measure the voltage between the terminals R, S, T.		Digital MultiMeter/ Tester
	All	1) Megger check (between the main circuit and the ground) 2) Are any fixed parts removed? 3) Are there any traces of overheating at each component's cleaning?		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1) Undo the inverter connections short the terminals R , $\mathrm{S}, \mathrm{T}, \mathrm{U}, \mathrm{V}, \mathrm{W}$ and measure between these parts and the ground. 2) Tighten the screws. 3) Visual check.	1) Over $5 \mathrm{M} \Omega$ 2), 3) No fault	DC 500V class Megger
	Conducto -r/Wire	1) Is the conductor rusty? 2) Is the wire coating damaged?		0	Visual check	No fault	
	Terminal	Is there any damage?		0	Visual check	No fault	-
	IGBT Module /Diode Module	Check the resistance between each of the terminals.			Undo the inverter connection and measure the resistance between $R, S, T \Leftrightarrow P, N$ and $\mathrm{U}, \mathrm{V}, \mathrm{W} \Leftrightarrow \mathrm{P}, \mathrm{N}$ with a tester.	(Refer 'How to Check Power Components')	Digital Multi- Meter/ Analog Tester

Inspection Location	Inspection Item	Inspection	Period		Inspection Method	Criterion	Measuring Instrument
	Smoothing Capacitor	1) Is there any liquid coming out? 2) Is the safety pin out, and is there any swelling? 3) Measure the capacitance.	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	1), 2) Visual check 3) Measure with a capacitancemeasuring device.	1), 2) No fault 3) Over 85% of the rated capacity	Capaci- tance Measu- ring device
	Relay	1) Is there any chattering noise during operation? 2) Is there any damage to the contact?		0 0	1) Auditory check 2) Visual check	No fault	-
	Resistor	1) Is there any damage to the resistor insulation? 2) Is the wiring in the resistor damaged (open)?		0 0	1) Visual check 2) Disconnect one of the connections and measure with a tester.	1) No fault 2) Error must be within $\pm 10 \%$ the displayed resistance.	Digital Multi- Meter/ Analog Tester
	Operation Check	1) Is there any unbalance between each phases of the output voltage? 2) Nothing must be wrong with display circuit after executing the sequence protective operation.		0 0	1) Measure the voltage between the output terminals U, V and W. 2) Short and open the inverter protective circuit output.	1) The voltage balance between the phases for 200 V (400V) class is under 4 V (8V). 2) The fault circuit operates according to the sequence.	Digital Multi- Meter/ Rectifying Voltmeter
$\stackrel{6}{0}$ 0 0 0 0 $\overline{0}$ 0 0	Cooling Fan	1) Is there any abnormal oscillation or noise? 2) Is the connection area loose?	0	0	1) Turn OFF the power and turn the fan by hand. 2) Tighten the connections.	1) Must rotate smoothly. 2) No fault	-

Inspection Location	Inspection Item	Inspection	Period		Inspection Method	Criterion	Measuring Instrument
$\frac{\sqrt{0}}{\frac{0}{01}}$	Meter	Is the displayed value correct?	0	0	Check the meter reading at the exterior of the panel.	Check the specified and management values.	Voltmeter/ Ammeter etc.
$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{0}{2} \end{aligned}$	All	1) Are there any abnormal vibrations or noise? 2) Is there any unusual odor?	0 0		1) Auditory, sensory, visual check. 2) Check for overheat and damage.	No fault	-
	Insulation Resistor	Megger check (between the output terminals and the ground terminal)		0	Undo the U, V and W connections and tie the motor wiring.	Over 5M Ω	500V class Megger

Note: Values in () is for the 400V class inverters.
Note: Life cycle of the Main components indicated above is based on continuous operation with rated load. It may vary with surrounded environment.

6.4.6 Parts replacement

Part name	Period	Comments		
Cooling fan	$2-3$ years	Exchange for a new part after consulting LS customer service center.		
Electrolytic				
capacitor			$\quad 5$ years	Check for the periodic inspection for 1 year.
:---				
Exchange for a new part after consulting LS				
customer service center.				
The Recommended level to exchange a				
capacitor in main/control circuit is 85\% or less				
of the initial value.	$	$	Relays	-
:---:	:---			
Rustomere for a new part after consulting LS center.				

The life expectancy of a part depends on the type of part, the environment, and operating condition.

CHAPTER 7 - OPTIONS

7.1 OPTION LIST

iP5A series is available to connect below option device.

$\begin{aligned} & \overline{\widetilde{\sigma}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{㐅} \end{aligned}$	Keypad	LCD	32 character display keypad Download and Upload available	All units
	Remote	Remote cable	$2 \mathrm{~m}, 3 \mathrm{~m}$ and 5 m long keypad cable enables users to control the inverter from a distant area.	Optional
	Dynamic braking	DB resistor	To enhance the regenerative braking performance, it makes the inverter to accelerate/decelerate rapidly.	According to inverter capacity
		DB unit	If it need a regenerative braking, it is used with DB resistor.	
		Conduit for NEMA TYPE 1	Install it to fit for NEMA TYPE 1 Enclosure or IP20.	$\begin{gathered} \text { 15~90kW } \\ (20 \sim 125 \mathrm{HP}) \end{gathered}$
	Comm. option card	DEVICENET	DEVICENET optional communication card	All series (Above S/W V1.0)
		PROFIBUS	PROFIBUS optional communication card.	
		$\begin{aligned} & \text { LS485 } \\ & \text { /MODBUS_RTU } \end{aligned}$	LS485/MODBUS_RTU optional communication card	
		Lonworks	Lonworks optional communication card	
		BACNet	BACNet optional communication card	
		MODBUS_TCP	MODBUS_TCP optional communication card	
		Metasys_N2	Metasys_N2 optional communication card.	
		CCLink	CCLink optional communication card.	

Note) Refer to Option manuals for details.

Chapter 7-Options

MEMO

CHAPTER 8 - RS485 COMMUNICATION

8.1 Introduction

Inverter can be controlled and monitored by the sequence program of the PLC or other master module.
Drives or other slave devices may be connected in a multi-drop fashion on the RS485 network and may be monitored or controlled by a single PLC or PC. Parameter setting and change are available through PC.

8.1.1 Features

Inverter can be easily applied for Factory automation because Operation and monitoring is available by User-program.

* Parameter change and monitoring is available via computer.
(Ex: Accel/Decel time, Freq. Command etc.)
* Interface type of RS485 reference:

1) Allows the drive to communicate with any other computers.
2) Allows connection of up to 31 drives with multi-drop link system.
3) Noise-resistant interface.

8.1.2 Connection guide for RS485 communication with PC , PLC and RS232/485

* REPEATER is not a required item but helps communication in long-distance communication or high noise environment.

8.1.3 Before installation

Before installation and operation, this should be read thoroughly. If not, it can cause personal injury or damage to other equipment.

8.2 Specification

8.2.1 Performance specification

Item	Specification
Transmission form	Bus method, Multi-drop Link System
Applicable inverter	SV-iP5A series
Connectable drives	Max. 31
Transmission distance	Max. 1,200m (Within 700m Recommended)
Recommended wire	$0.75 \mathrm{~mm}^{2}(12 \mathrm{AWG})$, Shielded Twisted-Pare Wire

8.2.2 Hardware specification

Item	Specification
Installation	Use C+, C-,CM terminals on control terminal block
Power supply	Use Insulated power from the inverter power supply

8.2.3 Communication specification

Item	Specification
Communication speed	$19,200 / 9,600 / 4,800 / 2,400 / 1,200$ bps selectable
Communication system	Half duplex system
Character system	ASCII (8 bit)
Stop bit length	1 bit
Sum check (CRC16)	2 bytes
Parity bit	None
Protocol supported	Parameter Read/Write, Monitoring parameter register/execution Broadcasting

8.2.4 Installation

Connecting the communication line

1) Connect the RS485 communication line to the inverter's (C+), (C-) and CM terminals of the control terminals.
2) Connect the CM terminal among inverters for stable communication.
3) Check the connection and turn ON the inverter.
4) If the communication line is connected correctly set the communication-related parameters as the following.
5) Install a repeater to upgrade the communication speed or longer than 1200 mm communication line is used.
Repeater is required for upgrading communication quality in the noise-high environment.

Communication parameters

Code	Display	Name	Set value	Unit	Default
DRV 03	Drive mode	Drive mode	Int. 485	-	Fx/Rx-1
DRV_04	Freq mode	Freq mode	Int. 485	-	KeyPad-1
DRV_91	Drive mode2	Drive mode 2	KeyPad Fx/Rx-1 Fx/Rx-2	-	Fx/Rx-1
DRV_92	Freq mode2	Freq mode 2	$\begin{gathered} \hline \text { KeyPad-1 } \\ \text { KeyPad-2 } \\ \text { V1 } \\ \text { V1S } \\ \text { I } \\ \text { V1+I } \\ \text { Pulse } \\ \hline \end{gathered}$	-	KeyPad-1
I/O_20~27	M1 ~ M8	Programmable Digital Inputs	Main-drive	-	
1/O_90	Inv No	Inverter number	1~250	-	1
I/O_91	Baud rate	Communication speed	$\begin{aligned} & 1200 \mathrm{bps} \\ & 2400 \mathrm{bps} \\ & 4800 \mathrm{bps} \\ & 9600 \mathrm{bps} \\ & 19200 \mathrm{bps} \end{aligned}$	-	9600 bps
I/O_92	COM Lost Cmd	Operating mode when communication signal is lost	None FreeRun Stop	-	None
I/O_93	COM Time Out	Time to determine whether Communication signal is lost.	0.1~120.0	sec	1.0
I/O_94	Delay Time	Delay time of communication response	1 ~ 1200	msec	5

8.3 Operation

8.3.1 Operating steps

1) Check whether the computer and the inverter are connected correctly.
2) Turn ON the inverter. But, do not connect the load until stable communication between the computer and the inverter is verified. Start the operating program for the inverter from the computer.
3) If computer is a master, RS232-485 converter is needed to communicate because computer does not have RS485 port.
The communication is delayed at transmitting/receiving when the RS232-485 converter is used. If delay is happened, retry the communication by increasing the I/O-94 [Delay Time].
4) Operate the inverter using the operating program for the inverter.
5) Refer to 'Chapter 6. Trounbleshooting and Maintenance' if the communication is not operating normally.
6) User program or the 'DriveView 7' program supplied from LS Industrial Systems can be used as the operating program for the inverter.
7) Turn the inverter J 3 switch ON to connect the terminating resistor for the end of network.

* Connect to $\mathrm{C}+, \mathrm{C}-, \mathrm{CM}$ terminal on the control terminal. Be careful for the polarity(+, -).
* Maximum connectable inverter are 31.

8.4 Communication protocol (RS485)

The configuration of RS485 is that PC or PLC is the Master and Inverter Slave. Inverter responds the Master's Read/Write Requests.
When master sends Write Request to Inverter address \# 255, all inverters perform Write action but do not return a Acknowledge response. This is used to drive multiple inverters at the same time via RS485.

8.4.1 Basic format

1) Command message (Request):

ENQ	Inverter No.	CMD	Data	SUM	EOT
1 byte	2 bytes	1 byte	n bytes	2 bytes	1 byte

* Normal response (Acknowledge Response):

ENQ	Inverter No.	CMD	Data	SUM	EOT
1 byte	2 bytes	1 byte	$\mathrm{n} * 4$ bytes	2 bytes	1 byte

* Negative response (Negative Acknowledge Response):

ENQ	Inverter No.	CMD	Data	SUM	EOT
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

2) Description :

* Request starts with "ENQ" and ends with "EOT".
* Acknowledge Response starts with "ACK" and ends with "EOT".
* Negative Acknowledge Response starts with "NAK" and ends with "EOT".
* "Inverter Number" is the number of Inverters used and indicated in 2 bytes ASCIIHEX. (ASCII-HEX : Hexadecimal consists of '0' ~ ' 9 ', ' A ' ~ 'F)
* CMD : Capital letter ("IF Error" when small letter is used.)

Character	ASCII-HEX	Command
' R '	52 h	Read
' ${ }^{\prime}$	57 h	Write
' Y^{\prime}	58 h	Request for monitoring registration
	59 h	Execution for monitoring registration

- Data:ASCII-HEX

Ex) when data value is $3000: 3000(\mathrm{dec}) \rightarrow$ ' 0 ' ' B ' ' B ' ' 8 ' $\mathrm{h} \rightarrow 30 \mathrm{~h} 42 \mathrm{~h} 42 \mathrm{~h}$ 38h

- Error code : ASCII (20h ~ 7Fh)
- Receive/Send buffer size : Receive= 39 bytes, Send=44 bytes
- Monitor register buffer : 8 Word
- SUM : to check the communication error

SUM = ASCII-HEX format of lower 8 bit of (Inverter No. + CMD + DATA)
Ex) Command Message (Request) for reading one address from address " 9000 "

ENQ	Inverter No.	CMD	Address	Number of address to read	SUM	EOT
05 h	" 01 "	"R"	" 9000 "	"1"	"AD"	04 h
1 byte	2 bytes	1 byte	4 bytes	1 byte	2 bytes	1 byte

$=30 h+31 h+52 h+39 h+30 h+30 h+30 h+31 h$
$=1$ ADh (except for ENA/ACK/EOT value)

8.4.2 Detail communication protocol

1) Request for Read: Request for read successive ' N ' numbers of WORD from address "XXXX"

ENQ	Inv. No.	CMD	Address	Number of Address	SUM	EOT
05 h	" $01 " \sim$ "FA"	"R"	"XXXX"	" 1 " \sim " $8=\mathrm{n}$	"XX"	04 h
1 byte	2 bytes	1 byte	4 bytes	1 byte	2 bytes	1 byte

Total bytes $=12$
The quotation marks (" ") mean character.
1.1) Acknowledge Response :

ACK	Inv No	CMD	Data	SUM	EOT
06 h	" 01 " \sim "FA"	" R "	" $X X X X$ "	" $X X$ "	04 h
1 byte	2 bytes	1 byte	$\mathrm{N} * 4$ bytes	2 bytes	1 byte

Total bytes $=7$ * n * $4=$ Max. 39
1.2) Negative Acknowledge Response :

NAK	Inv No	CMD	Error code	SUM	EOT
15 h	" 01 " \sim "FA"	"R"	"**"	" XX "	04 h
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

Total bytes $=9$
2) Request for Write :

ENQ	Inverter No	CMD	Address	Number of Address	SUM	EOT	EOT
05 h	"01" \sim "FA"	"W"	"XXXX"	" $1 " \sim$ " $8=\mathrm{n}$	"XXXX..."	"XX"	04 h
1 byte	2 bytes	1 byte	4 bytes	1 byte	$\mathrm{n} * 4$ bytes	2 bytes	1 byte

Total bytes $=12+\mathrm{n}$ * $4=$ Max. 44
2.1) Acknowledge response :

ACK	Inverter No.	CMD	Data	SUM	EOT
06 h	" 01 " \sim "FA"	" W"	"XXXX..."	" XX"	04 h
1 byte	2 bytes	1 byte	$\mathrm{n} * 4$ bytes	2 bytes	1 byte

Total bytes $=7+n$ * $4=$ Max. 39
Note) When Request for Write and Acknowledge Response is exchanged between PC and Inverter for the first time, previous data is returned. From the second time of transmission, the current data will be received.
2.2) Negative response :

NAK	Inverter No.	CMD	Error code	SUM	EOT
15 h	"01" \sim "FA"	"W"	"**"	"XX"	04 h
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

Total bytes $=9$
3) Request for Monitor Register: This is useful when constant parameter monitoring and data updates are required.
Request for Register of ' n ' numbers of Address. (non-successive)

ENQ	Inverter No.	CMD	Number of Address	Address	SUM	EOT
05 h	" 01 " \sim "FA"	" $\mathrm{X} "$	" 1 " \sim " 8 " $=\mathrm{n}$	"XXXX..."	" $\mathrm{XX"}$	04 h
1 byte	2 bytes	1 byte	1 byte	$\mathrm{n} * 4$ bytes	2 bytes	1 byte

Total bytes $=8+n * 4=\operatorname{Max} 40$
3.1) Acknowledge Response :

ACK	Inverter No.	CMD	SUM	EOT
06 h	" 01 " \sim "FA"	" X "	" $X X$ "	04 h
1 byte	2 bytes	1 byte	2 bytes	1 byte

Total bytes = 7
3.2) Negative Acknowledge Response:

NAK	Inverter No.	CMD	Error code	SUM	EOT
15 h	"01" \sim "FA"	" $\mathrm{X} "$	"**"	"XX"	04 h
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

Total bytes = 9
4) Execution Request for monitor register: Request for read of address registered by monitor register.

ENQ	Inverter No.	CMD	SUM	EOT
05 h	" 01 " \sim "FA"	"Y"	"XX"	04 h
1 byte	2 bytes	1 byte	2 bytes	1 byte

Total bytes $=7$
4.1) Acknowledge response:

ACK	Inverter No.	CMD	Data	SUM	EOT
06 h	"01"~"FA"	" Y "	"XXXX..."	"XX"	04 h
1 byte	2 bytes	1 byte	n * 4 bytes	2 bytes	1 byte

Total bytes $=7+\mathrm{n}$ * $4=\mathrm{Max} 39$
4.2) Negative response:

NAK	Inverter No.	CMD	Error code	SUM	EOT
15 h	"01"~"FA"	" Y "	"**"	" $X X$ "	04 h
1 byte	2 bytes	1 byte	2 bytes	2 bytes	1 byte

Total bytes = 9

* Request for Monitor Register should be made before Execution Request for monitor register. If inverter power is turned off, monitor register is cleared so redo the request for monitor register when Power ON.

5) Error code

Error code	Description
IF	ILLEGAL FUNCTION When master is sending codes other than Function code (R, $\mathrm{W}, \mathrm{X}, \mathrm{Y})$.
IA	ILLEGAL ADDRESS - When parameter address does not exist.
ID	ILLEGAL VALUE -When Data contains an out of range value for an inverter parameter during 'W' (Write).
WM	WRITE MODE ERROR -When the requested data cannot be changed (written) during 'W' (Write) such as Read Only, Not adjustable during Run parameters.

8.5 Parameter code list

<Common area> : Area accessible regardless of inverter models (Note 3)

$\begin{gathered} \hline \text { Addres } \\ \mathrm{S} \end{gathered}$	Parameter	Scale	$\begin{gathered} \text { Uni } \\ t \end{gathered}$	$\begin{aligned} & \mathrm{R} / \\ & \mathrm{W} \end{aligned}$	Data value
0x0000	Inverter model	-	-	R	9: SV-iP5A
0x0001	Inverter capacity	-	-	R	$0: 0.75 \mathrm{~kW}(1 \mathrm{HP})$ $1: 1.5 \mathrm{~kW}(2 \mathrm{HP})$ $2: 2.2 \mathrm{~kW}(3 \mathrm{HP})$ $3: 3.7 \mathrm{~kW}(5 \mathrm{HP})$ $4: 5.5 \mathrm{~kW}(7.5 \mathrm{HP})$, $5: 7.5 \mathrm{~kW}(10 \mathrm{HP})$, $6: 11 \mathrm{~kW}(15 \mathrm{HP})$, $7: 15 \mathrm{~kW}(20 \mathrm{HP})$, $8: 18.5 \mathrm{~kW}(25 \mathrm{HP})$, $9: 22 \mathrm{~kW}(30 \mathrm{HP})$, $\mathrm{A}: 30 \mathrm{~kW}(40 \mathrm{HP})$, $\mathrm{B}: 37 \mathrm{~kW}(50 \mathrm{HP})$, $\mathrm{C}: 45 \mathrm{~kW}(60 \mathrm{HP})$, $\mathrm{D}: 55 \mathrm{~kW}(75 \mathrm{HP})$, $\mathrm{E}: 75 \mathrm{~kW}(100 \mathrm{HP})$ $\mathrm{F}: 90 \mathrm{~kW}(125 \mathrm{HP})$ $10: 110 \mathrm{~kW}(150 \mathrm{HP})$ $11: 132 \mathrm{~kW}(200 \mathrm{HP})$ $12: 160 \mathrm{~kW}(250 \mathrm{HP})$ $13: 220 \mathrm{~kW}(300 \mathrm{HP})$ $14: 280 \mathrm{~kW}(350 \mathrm{HP})$ $15: 315 \mathrm{~kW}(400 \mathrm{HP})$ $16: 375 \mathrm{~kW}(500 \mathrm{HP})$ $17: 450 \mathrm{~kW}(600 \mathrm{HP})$
0x0002	Inverter Input Voltage	-	-	R	$\begin{aligned} & 0: 220 \mathrm{~V} \text { Class } \\ & 1: 400 \mathrm{~V} \text { Class } \end{aligned}$
0x0003	S/W Version	-	-	R	(Ex) $\begin{array}{r}0 \times 0100: \text { Version } 1.00 \\ 0 \times 0101: V e r s i o n ~ \\ 1.10\end{array}$
0x0005	Frequency Reference	0.01	Hz	$\begin{aligned} & \hline \mathrm{R} / \\ & \mathrm{W} \end{aligned}$	-
0x0006	Run Command (Option) (Note 1)	-	-	R/	BIT 0 : Stop (S) BIT 1 : Forward run (F) BIT 2 : Reverse run (R) BIT 3 : Fault reset ($0->1$) BIT 4 : Emergency stop BIT 5 : Not used
				R	BIT 6, BIT 7 : Run/Stop command source 0(Terminal), 1 (Keypad), 2(Option), 3(Int. 485) BIT 8 ~14 : Freq. reference BIT $0 \sim 16$: Multi-step speed freq. (0, 2~16) BIT 17 ~ 19 : UpDown (Up, Down, UD Zero) BIT 20 ~ 21 : Reserved BIT 22 ~ 25 : Analog (V1, V1S, I, V1I) BIT 26 : Pulse, BIT 27 : Sub, BIT 28: Int. 485 BIT 29 : Option, BIT 30 : Jog BIT, 31 : PID
					BIT 15 : Set when network error
0x0007	Acceleration Time	0.1	sec	R/	-
0x0008	Deceleration Time	0.1	sec	R/ W	-

Chapter 8 - RS485 Communication

Addres S	Parameter	Scale	$\begin{gathered} \text { Uni } \\ t \end{gathered}$	$\begin{aligned} & \mathrm{R} / \\ & \mathrm{W} \end{aligned}$	Data value
Ox0009	Output Current	0.1	A	R	
Ox000A	Output Frequency	0.01	Hz	R	-
Ox000B	Output Voltage	1.0	V	R	-
Ox000C	DC Link voltage	1.0	V	R	-
Ox000D	Output power	0.1	kW	R	-
Ox000E	Operating status of Inverter			R	BIT 0 : Stop BIT 1 : Forward running BIT 2 : Reverse running BIT 3 : Fault (Trip) BIT 4 : Accelerating BIT 5 : Decelerating BIT 6 : speed arrival
0x000E	Operating status of Inverter	-	-	R	BIT 7 : DC Braking BIT 8 : Stopping BIT 9 : not Used BIT10 : Brake Open BIT11 : Forward run command BIT12 : Reverse run command BIT13 : REM. R/S (Int. 485, OPT) BIT14 : REM. Freq. (Int. 485, OPT)
0x000F	Trip information	-		R	BIT 0 : OCT1 BIT 1 : OV BIT 2 : EXT-A BIT 3 : BX BIT 4 : LV BIT 5 : RESERVE BIT 6 : GF (Ground Fault) BIT 6 : OHT (Inverter overheat) BIT 7 : ETH (Motor overheat) BIT 8 : OLT (Overload trip) BIT10: HW-Diag BIT11 : RESERVE BIT12 : OCT2 BIT13 : OPT (Option error) BIT14 : PO (Phase Open) BIT15 : IOLT
0x0010	Input terminal status	-	-	R	BIT 0 : M1 BIT 1 : M2 BIT 2 : M3 BIT 3 : M4 BIT 4 : M5 BIT 5 : M6 BIT 6 : M7 BIT 7 : M8 BIT 8 :

Chapter 8 - RS485 Communication

$\begin{gathered} \text { Addres } \\ S \end{gathered}$	Parameter	Scale	$\begin{gathered} \text { Uni } \\ \mathrm{t} \end{gathered}$	$\begin{aligned} & \mathrm{R} / \\ & \mathrm{W} \\ & \hline \end{aligned}$	Data value
					$\begin{aligned} & \hline \text { BIT 9:- } \\ & \text { BIT } 10:- \end{aligned}$
0x0011	Output terminal status	-	-	R	BIT 0 : AUX1 BIT 1 : AUX2 BIT 2 : AUX3 BIT 3 : AUX4 BIT 4 : - BIT 5 :- BIT 6 :- BIT 7 : 30AC
0x0012	V1	0~10V	-	R	
0x0013	V2	$0 \sim 10 \mathrm{~V}$	-	R	
0x0014	।	$\underset{A}{0 \sim 20 \mathrm{~m}}$	-	R	-
0x0015	RPM	-	-	R	- -
0x001A	Unit display	-	-	R	$0: \mathrm{Hz}, 1: \mathrm{Rpm}$
0x001B	Pole number	-	-	R	
Ox001C	Custom Version	-	-	R	-

Note 1) Detail description on Common area address 0×0006

Bit	Value	R/W	Name	Description
0	0x01	R/W	Stop	Issue a Stop command via communication ($0 \gg 1$)
1	0x02	R/W	Forward run	Issue a Forward run command via communication (0>1)
2	0x04	R/W	Reverse run	Issue a Reverse run command via communication ($0 \gg 1$)
3	0x08	R/W	Fault reset	Issue a Fault reset command via communication (0->1)
4	0x10	R/W	Emergency stop	Issue a Emergency stop command via communication (0->1)
5			Not used	Not Used
6~7		R	Operating command	0 (Terminal), 1 (keypad), 2 (option), 3 (lnt. 485)
8~14		R	Frequency command	A. When operating command is issued via Terminal, Keypad or Option 0 : DRV-00, 1 : Not used, 2 : Multi-step speed 1, 3 : Multi-step speed 2, 4 : Multi-step speed 3, 5 : Multi-step speed 4, 6 : Multi-step speed 5, 7 : Multi-step speed 6 8 : Multi-step speed 7, $\quad 9$: Multi-step speed 8, 10 : Multi-step speed $9, \quad 12$: Multi-step speed 11 , 11 : Multi-step speed 10, 13 :Multi-step speed 12 14 : Multi-step speed 13, 15 : Multi-step speed 14, 16 : Multi-step speed 15, 17 :Up, 18 : Down, 19 : Up/Down Zero 20~21 : RESERVE, 22 : V1, 23 : V1S,

Chapter 8 - RS485 Communication

Bit	Value	R/W	Name	Description	
				$24:$ I,	$25:$ V1+I,
				$26:$ Pulse	
				$27:$ Sub,	$28:$ Int. 485,
$29:$ Option					
15	0×8000	R	Network error	Network malfunction	

Chapter 8 - RS485 Communication

8.5.1 iP5A operating status in Address E, Common area

Output frequency

Forward Run command Reverse Run command

Accelerating
Decelerating
Speed arrival
Stopping
Stop
Forward running
Reverse running

<iP5A Address usage area by groups >

DRV	$9100-91 F F$
FU1	$9200-92 F F$
FU2	$9300-93 F F$
I/O	$9400-94 F F$
EXT	$9500-95 F F$
COM	$9600-96 F F$
APP	$9700-97 F F$

Address setting method to access the parameter using RS485: Area assigned by inverter + Address usage area by groups + Code no. (Hex).

Ex) To check the content of I/O-93 [COM Time Out], perform Read or Write the address 0x945D.

8.6 Troubleshooting

Refer to the below chart when RS485 communication error occurs.

(Continued from previous page)

Are Status
LEDs on the control board turned off?

8.7 ASCII Code List

Character	Hex	Character	Hex	Character	Hex
A	41	q	71	@	40
B	42	r	72	[5B
C	43	s	73	1	5C
D	44	t	74]	5D
E	45	u	75		5 E
F	46	v	76		5 F
G	47	w	77		60
H	48	x	78	\{	7B
I	49	y	79	\|	7 C
J	4A	z	7 A	\}	7 D
K	4B	0	30	\sim	7E
L	4 C	1	31	BEL	07
M	4D	2	32	BS	08
N	4E	3	33	CAN	18
0	4F	4	34	CR	OD
P	50	5	35	DC1	11
Q	51	6	36	DC2	12
R	52	7	37	DC3	13
S	53	8	38	DC4	14
T	54	9	39	DEL	7F
U	55	space	20	DLE	10
V	56	!	21	EM	19
W	57	"	22	ACK	06
X	58	\#	23	ENQ	05
Y	59	\$	24	EOT	04
Z	5A	\%	25	ESC	1B
A	61	\&	26	ETB	17
B	62	'	27	ETX	03
C	63	(28	FF	0C
D	64)	29	FS	1 C
E	65	*	2A	GS	1D
F	66	+	2B	HT	09
G	67	,	2C	LF	OA
H	68	-	2D	NAK	15
I	69		2E	NUL	00
J	6A	/	2 F	RS	1E
K	6B	:	3 A	S1	OF
L	6C	;	3B	SO	OE
M	6D	$<$	3 C	SOH	01
N	6E	$=$	3D	STX	02
O	6 F	>	3 E	SUB	1 A
P	70	?	3 F	SYN	16
				US	1 F OB

CHAPTER 9 - APPLYING DRIVES TO SINGLE-PHASE INPUT APPLICATION

9.1 Introduction

SV-IP5A is a three-phase standard variable frequency drive(VFD). When applying singlephase power to a three-phase VFD, there are several constraints that need to be considered. Standard Pulse-Width-Modulated (PWM) VFDs use a 6 -pulse diode rectifier. The 6 -pulse rectification results in 360 Hz DC bus ripple when used with a three-phase 60 Hz supply. However, under single-phase use, the DC bus ripple becomes 120 Hz and the VFDs DC bus circuit is subject to higher stress in order to deliver equivalent power.
Additionally, input currents and harmonics increase beyond those encountered with threephase input. Input current distortion of 90% THD and greater can be expected under singlephase input, compared to approximately 40% with three-phase input as indicated in Figure 2. Therefore, single-phase use requires the three-phase VFD power rating be reduced (derated) to avoid over stressing the rectifier and DC link components.

Figure-1 Typical Three-Phase Configuration

Figure-2 Typical Single-Phase Configuration

9.2 Power(HP), Input Current and Output Current

When using a three-phase VFD with single-phase input, derating the drive's output current and horsepower will be necessary because of the increase in DC bus ripple voltage and current. In addition, the input current through the remaining two phases on the diode bridge converter will approximately double, creating another derating consideration for the VFD. Input current harmonic distortion will increase beyond that with a three-phase supply making the overall input power factor low. Input current distortion over 100\% is likely under singlephase conditions without a Reactor. Therefore, the Reactor is always required. When using a motor that is selected by the three-phase drive rating criteria when using single-phase input, it may result in poor performance, premature drive failure.
The selected drive of single-phase current ratings must meet or exceed the motor current ratings as indicated in Table 1.

9.3 Input Frequency and Voltage Tolerance

The drive ratings in Table 1 are valid for 60 Hz input only. Operation at input frequencies other than 60 Hz will require further review by LSIS.
The AC supply voltage must be within the required voltage range of $240 / 480 \mathrm{Vac}+10 \%$ to -5% to maximize motor power production. Standard product with three-phase voltage input as an allowable range of $+10 \%$ to -15%. Therefore, a stricter input voltage tolerance of +10 to -5% applies when using the drive with a single-phase supply.
The average bus voltage with single-phase input is lower than the equivalent of a threephase input. Therefore, the maximum output voltage (motor voltage) will be lower with a single-phase input The minimum input voltage must be no less than 228 Vac for 240 volt models and 456 Vac for 480 volt models, to ensure motor voltage production of 207Vac and 415 Vac , respectively. Thus, if full motor torque must be developed near base speed (full power) it will be necessary to maintain a rigid incoming line voltage so that adequate motor voltage can be produced. Operating a motor at reduced speed (reduced power), or using a motor with a base voltage that is lower than the incoming AC supply rating (ex. 208Vac motor with a 240 Vac supply), will also minimize the effect of voltage deprivation.
(240 VAC Input $\rightarrow 208 \mathrm{~V}$ motor, 480VAC Input $\rightarrow 400 \mathrm{~V}$ motor)

9.4 Wiring and Peripheral Device

It is important that input wiring and branch circuit protection be selected based on the drive's single-phase input current rating indicated in Table 1-2.
The single-phase input current after derating differs from the three-phase input indicated on the VFD nameplate. Connect single-phase AC input wiring below Figure-3 (R(L1)-T(L3)).

Chapter 9 Applying Drives to Single-Phase Input Application

Figure-3 Terminal Wiring Diagram

Single-Phase Rating (240V/60Hz)											
[kW]	[HP]	Single-Phase Current Rating				$\begin{array}{\|c\|} \hline \text { Wire Seletion } \\ \hline \text { AWG } \\ \hline \end{array}$		FUSE		MCCB	Electronic Contactor
		Output Amp		Input Amp							
		HD [A]	ND [A]	HD [A]	ND [A]	R,S,T	U,V,W	[A]	[V]		(UL Type)
5.5 kW	7.5	17	24	8.5	12	10	10	40		UTS150/50A	MC-32a
7.5 kW	10	23	32	12	16	8	8	60		UTS150/60A	MC-40a
11kW	15	33	46	17	24	6	6	80		UTS150/100A	MC-50a
15kW	20	44	60	23	31	4	4	100	500 V	UTS150/125A	MC-65a
18.5kW	25	54	74	28	38	2	2	125		UTS150/150A	MC-100a
22 kW	30	68	88	35	46	2	2	150		UTS250/175A	MC-130a
30 kW	40	84	115	43	59	1/0	1/0	200		UTS250/225A	MC-150a

Table 1. Single_Phase Rating(240V/60Hz)

Single-Phase Rating (480V/60Hz)											
[kW]	[HP]	Single-Phase Current Rating				$\begin{array}{\|c\|} \hline \text { Wire Seletion } \\ \hline \text { AWG } \\ \hline \end{array}$		FUSE		MCCB	Electronic Contactor
		Output Amp		Input Amp							
		HD [A]	ND [A]	HD [A]	ND [A]	R,S, \mathbf{T}	U,V,W	[A]	[V]		S(UL Type)
5.5 kW	7.5	8.8	12	4.8	6.6	12	12	20		UTE100/30A	MC-22b
7.5kW	10	12	16	6.7	8.9	12	12	30		UTE100/30A	MC-22b
11kW	15	16	24	9.1	14	10	10	40		UTS150/50A	MC-40a
15kW	20	24	30	12	16	8	8	60		UTS150/60A	MC-50a
18.5kW	25	30	39	15	20	6	6	70		UTS150/60A	MC-50a
22 kW	30	39	45	20	23	4	4	80	00V	UTS150/100A	MC-65a
30kW	40	45	61	23	32	4	4	100		UTS150/125A	MC-75a
37kW	50	61	75	31	39	2	2	125		UTS150/150A	MC-105a
45kW	60	75	91	39	47	2	2	150		UTS250/200A	MC-130a
55kW	75	91	110	47	57	2	2	175		UTS250/250A	MC-150a
75 kW	100	110	152	57	78	1/0	1/0	250		UTS400/300A	MC-185a
90kW	120	152	183	79	95	1/0	1/0	300		UTS400/350A	MC-225a
110kW	150	183	223	95	116	4/0	4/0	350		UTS400/400A	MC-330a
132kW	180	223	264	113	134	4/0	4/0	400	700 V	UTS600/500A	MC-400a
160kW	225	264	325	135	166	300	300	450		UTS600/600A	MC-400a

Table 2. Single-Phase Rating(480V/60Hz)

Chapter 9 Applying Drives to Single-Phase Input Application

9.5 Considerations When Using a Three-Phase Drive with Single-Phase Input

Depending on the increased DC ripple, sensorless mode may result in poor performance, If phase open trip occurs, cancel the input phase open protection bit setting (FU1-69)
When applying single-phase power to a three-phase VFD, you can not limit the current to exceed the single-phase rating. Therefore, motor capacity, motor overload trip and Ethermal function must be set to protect motor.
The Reactor is always required. Therefore, Please purchase a built-in DC reactor product. IP5A 200V 5.5 ~ 30kW, 400V 5.5 ~ 11kW capacity products does not have a built-in DC reactor. The product does not have a built-in DC reactor, install an external AC reactor because it can not be equipped with a DC reactor.

APPENDIX A- UL MARKING

1. SHORT CIRCUIT RATING

Maximum allowed prospective short-circuit current at the input power connection is defined in IEC $60439-1$ as 100 kA . The drive is suitable for use in a circuit capable of delivering not more than $\mathbf{1 0 0}$ kA RMS at the drive's maximum rated voltage.

Le courant maximum de court-circuit présumé autorisé au connecteur d'alimentation électrique est défini dans la norme CEI 60439-1 comme égal à 100 kA . L'entraînement convient pour une utilisation dans un circuit capable de délivrer pas plus de 100 kA RMS à la tension nominale maximale de l'entraînement.

2. SHORT CIRCUIT FUSE/BREAKER

Use Class H or K5 UL Listed Input Fuse and UL Listed Breaker Only. See the table below for the Voltage and Current rating of the fuses and the breakers.

$\begin{array}{\|l} \text { Input } \\ \text { Votage } \end{array}$	$\begin{aligned} & \text { Motor } \\ & \text { [kW] } \end{aligned}$	Inverter	External Fuse		Breaker		Internal Fuse			
			Current [A]	$\begin{gathered} \text { Voltage } \\ {[\mathrm{V}]} \end{gathered}$	Current [A]	$\begin{gathered} \text { Voltage } \\ {[V]} \end{gathered}$	Current $[A]$	$\begin{gathered} \text { Voltage } \\ \text { V] } \end{gathered}$	Manufacturer	Model Number
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { Class } \end{aligned}$	5.5	SV055iP5A-2	40	500	50	230				
	7.5	SV075iP5A-2	60	500	60	230				
	11	SV110IP5A-2	80	500	100	230				
	15	SV150iP5A-2	100	500	100	230				
	18.5	SV185iP5A-2	125	500	225	230				
	22	SV220iP5A-2	150	500	225	230				
	30	SV300iP5A-2	200	500	225	230				
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { Class } \end{aligned}$	5.5	SV055iPS5-4	20	500	30	460				
	7.5	SV075iP5A-4	30	500	30	460				
	11	SV110iPS5-4	40	500	50	460				
	15	SV150iP5A-4	60	500	60	460				
	18.5	SV185iP5A-4	70	500	75	460				
	22	SV0220iP5A-4	80	500	100	460				
	30	SV0300iP5A-4	100	500	125	460				
	37	SV0370iP5A-4	125	500	125	460	160	660	Hinode	660GH-160SUL
	45	SV0450iP5A-4	150	500	150	460	160	660	Hinode	660GH-160SUL
	55	SV0550iP5A-4	175	500	175	460	200	660	Hinode	660GH-200SUL
	75	SV0750iP5A-4	250	500	225	460	250	660	Hinode	660GH-250SUL
	90	SV0900iP5A-4	300	500	300	460	315	660	Hinode	660GH-315SUL
	110	SV01100iP5A-4	350	700	400	460	200×2P	660	Hinode	660GH-200SULx2P
	132	SV01320iP5A-4	400	700	500	460	250x2P	660	Hinode	660GH-250SULx2P
	160	SV01600iP5A-4	450	700	600	460	$315 \times 2 \mathrm{P}$	660	Hinode	660GH-315SULx2P
	220	SV02200iP5A-4	700	700	800	460	250×3P	660	Hinode	660GH-250SULx3P
	280	SV02800iP5A-4	800	700	1000	460	$315 \times 3 \mathrm{P}$	660	Hinode	660GH-315SULx3P
	315	SV03150iP5A-4	900	700	1000	460	800	690	Ferraz	6.9URD32TTF0800
	375	SV03750iP5A-4	1000	700	1200	460	900	690	Ferraz	6.9URD32TTF0900
	450	SV04500iP5A-4	1200	700	1200	460	1000	690	Ferraz	6.9URD32TTF1000

Use Class H or RK5 UL listed Input fuses and UL listed breakers ONLY. See the table above for the voltage and current ratings for the fuses and breakers.

Utiliser UNIQUEMENT des fusibles d'entrée homologués de Classe H ou RK5 UL et des disjoncteurs UL. Se reporter au tableau ci-dessus pour la tension et le courant nominal des fusibless et des disjoncteurs.

3. OVER LOAD PROTECTION

IOLT : IOLT (inverter Overload Trip) protection is activated at 110% of the inverter rated current for 1 minute and greater.
OLT : Inverter shuts off its output when inverter output current exceeds its overload trip level for overload trip time. OLT is selected when FU1-66 [Overload Trip Selection] is set to "Yes" and activated at 120\% of FU1-67 [Overload Trip Level] for 60 sec set in FU1-68 [Overload Trip Delay Time].

4. OVER SPEED PROTECTION

Not Provided With Overspeed Protection.

5. FIELD WIRING TERMINAL

Apply rated torques to the terminal screws. Loose screws may cause short circuits and malfunctions. Tightening the screw too much may damage the terminals and cause short circuits and malfunctions.

Use copper wires only with $600 \mathrm{~V}, 90^{\circ} \mathrm{C}$ rating for the power terminal wiring, and 300 V , $75^{\circ} \mathrm{C}$ rating for the control terminal wiring.

Power supply wirings must be connected to the R, S, and T terminals. Connecting them to the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ terminals causes internal damages to the inverter. Motor should be connected to the U, V, and W Terminals. Arrangement of the phase sequence is not necessary.

Appliquer des couples de marche aux vis des bornes. Des vis desserrées peuvent provoquer des courts-circuits et des dysfonctionnements. Ne pas trop serrer la vis, car cela risque d'endommager les bornes et de provoquer des courts-circuits et des dysfonctionnements.

Utiliser uniquement des fils de cuivre avec une valeur nominale de $600 \mathrm{~V}, 90{ }^{\circ} \mathrm{C}$ pour le câblage de la borne d' alimentation, et une valeur nominale de $300 \mathrm{~V}, 75{ }^{\circ} \mathrm{C}$ pour le câblage de la borne de commande.

Les câblages de l'alimentation électrique doivent être connectés aux bornes R, S et T. Leur connexion aux bornes U, V et W provoque des dommages internes à l'onduleur. Le moteur doit être raccordé aux bornes U, V et W . L'arrangement de l'ordre de phase n' est pas nécessaire.

Inverter Capacity [kW]		$\begin{aligned} & \text { Terminal } \\ & \text { Screw } \\ & \text { Size } \\ & \hline \end{aligned}$	Screw Torque ${ }^{\text {1 }}$		Wire ${ }^{\text {c }}$				
		Kgf.cm	lb -in	mm^{2}		AWG or kcmil			
		R,S,T		U,V,W	R,S,T	U,V,W			
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { Class } \end{aligned}$	5.5		M4	7.1 ~ 12.2	6.2~10.6	5.5	5.5	10	10
	7.5	M5	24.5 ~ 31.8	21.2~27.6	8	8	8	8	
	11	M5			14	14	6	6	
	15	M6	30.6 ~ 38.2	26.6~33.2	22	22	4	4	
	18.5	M6			38	38	2	2	
	22	M8	61.2 ~ 91.8	$53.1 \sim 79.7$	38	38	2	2	
	30	M8			60	60	1/0	1/0	
$\begin{aligned} & 400 \mathrm{~V} \\ & \text { Class } \end{aligned}$	5.5	M4	$7.1 \sim 12.2$	6.2~10.6	3.5	3.5	12	12	
	7.5	M4			3.5	3.5	12	12	
	11	M4			5.5	5.5	10	10	
	15	M6	30.6~38.2	26.6~33.2	8	8	8	8	
	18.5	M6			14	14	6	6	
	22	M8	61.2~91.8	$53.1 \sim 79.7$	22	22	4	4	
	30	M8			22	22	4	4	
	37	M8	67.3~87.5	58.4~75.9	38	38	2	2	
	45	M8			38	38	2	2	
	55	M8			38	38	2	2	
	75	M10	89.7~122.0	77.9~105.9	60	60	1/0	1/0	
	90	M10			60	60	1/0	1/0	
	110	M12	182.4~215.0	158.3~186.6	100	100	4/0	4/0	
	132	M12			100	100	4/0	4/0	
	160	M12			150	150	300	300	
	220	M12			200	200	400	400	
	280	M12	182.4~215.0	158.3~186.6	250	250	500	500	
	315	M12			325	325	700	700	
	375	M12			2×200	2×200	2×400	2×400	
	450	M12			2×250	2×250	2×500	2×500	

For 7.5~11kW 240V type inverters, Input and motor output terminal blocks are intended only for use with ring type connectors.

6. BASIC WIRING (Refer to 3.2 Wiring)

\1 CAUTION	
	\square Risk of Electric Shock - Read the manual carefully and follow the safety Instructions before installing or using the device. - Before opening the cover, disconnect all power sources and wait for at least 10 minutes.
4	Risque de blessure ou de choc électrique - Avant d'installer ou d'utiliser l'appareil, vous devez lire attentivement le manuel et suivre les consignes de sécurité. - Avant d'ouvrir le capot, débrancher toutes les sources d'alimentation et attendre au moins 10 minutes.

7. Maximum Temperature

SV008IP5A~SV900IP5A : Maximum Ambient Temperature $-40^{\circ} \mathrm{C}$.
SV1100IP5A~SV4500IP5A : Maximum Surrounding Air Temperature $-40^{\circ} \mathrm{C}$.
SV150IP5A~SV300IP5A - L : Maximum Ambient Temperature - $40^{\circ} \mathrm{C}$.
SV370IP5A~SV900IP5A - L : Maximum Ambient Temperature - $50^{\circ} \mathrm{C}$.

UL mark

The UL mark applies to products in the United States and Canada. This mark indicates that UL has tested and evaluated the products and determined that the products satisfy the UL standards for product safety. If a product received UL certification, this means that all components inside the product had been certified for UL standards as well.

CE mark

C
The CE mark indicates that the products carrying this mark comply with European safety and environmental regulations. European standards include the Machinery Directive for machine manufacturers, the Low Voltage Directive for electronics manufacturers and the EMC guidelines for safe noise control.

Low Voltage Directive

We have confirmed that our products comply with the Low Voltage Directive (EN 61800-5-1).

EMC Directive

The Directive defines the requirements for immunity and emissions of electrical equipment used within the European Union. The EMC product standard (EN 61800-3) covers requirements stated for drives.

EAC mark [$!$

The EAC (EurAsian Conformity) mark is applied to the products before they are placed on the market of the Eurasian Customs Union member states.
It indicates the compliance of the products with the following technical regulations and requirements of the Eurasian Customs Union:

Technical Regulations of the Customs Union 004/2011 "On safety of low voltage equipment" Technical Regulations of the Customs Union 020/2011 "On electromagnetic compatibility of technical products"

APPENDIX B- PERIPHERAL DEVICES

1. MCCB(Molded Case Circuit Breaker) and MC(Magnetic Contector)

Voltage	CAP. [kW]	MCCB				ELCB		MC	
		Model	Rating (A)	Model	Rating (A)	Model	Rating (A)	Model	Rating (A)
200 V Class	0.75	UTE100N	15	ABS33c	15	EBS33c	10	MC-9b	11
	1.5		15		15		15	MC-9b	11
	2.2		30		30		30	MC-12b	13
	3.7		30		30		30	MC-18b	18
	5.5	UTS150L	50	ABS53c	50	EBS53c	50	MC-32a	32
	7.5		60	ABS63c	60	EBS63c	60	MC-40a	40
	11		100	ABS103c	100	EBS103c	100	MC-50a	55
	15		125		125	EBS203c	125	MC-65a	65
	18.5		150	ABS203c	150		150	MC-100a	105
	22	UTS250L	175		175		175	MC-130a	130
	30		225		225		225	MC-150a	150
400V Class	0.75	UTE100N	15	ABS33c	15	EBS33c	15	MC-9b	9
	1.5		15		15		15		9
	2.2		15		15		15		9
	3.7		15		15		15	MC-12b	12
	5.5		30		30		30	MC-22b	22
	7.5		30		30		30		22
	11	UTS150L	50	ABS53c	50	EBS53c	50	MC-40a	40
	15		60	ABS63c	60	EBS63c	60	MC-50a	50
	18.5		60		60	EBS103c	60		50
	22		100	ABS103c	100		100	MC-65a	65
	30		125	ABS203c	125	EBS203c	125	MC-75a	75
	37		150		150		150	MC-100a	105
	45	UTS250L	200		200		200	MC-130a	130
	55		250		250		250	MC-150a	150
	75	UTS400L	300	ABS403c	300	EBS403c	300	MC-185a	185
	90		350		350		350	MC-225a	225
	110		400		400		400	MC-330a	330
	132	UTS600L	500	ABS603c	500	EBS603c	500		400
	160		600		630		630	MC-400a	400
	220	UTS800L	800	ABS803c	800	EBS803c	800	MC-630a	630
	280	UTS1200L	1000	ABS1003b	1000	EBS1003c	1000		630
	315		1200	ABS1203b	1200	EBS1203c	1200	MC-800a	800
	375	1400A	1400	1400A	1400	1400A	1400	900A	900
	450	1600A	1600	1600A	1600	1600A	1600	1000A	1000

2. AC Input Fuse and AC / DC Reactor

	Motor	Inverter	AC Input	AC R	actor	DC R	actor
Voltage			Fuse [A]	[mH]	[A]	[mH]	[A]
$\begin{aligned} & 200 \mathrm{~V} \\ & \text { Class } \end{aligned}$	0.75	SV008iP5A-2	10	2.13	5.7		8.7
	1.5	SV015iP5A-2	15	1.2	10	3	13
	2.2	SV022iP5A-2	20	0.88	14	2	19
	3.7	SV037iP5A-2	30	0.56	20	1.5	27
	5.5	SV055iP5A-2	40	0.39	30	1.37	29
	7.5	SV075iP5A-2	60	0.28	40	1.05	38
	11	SV110iP5A-2	80	0.20	59	0.74	56
	15	SV150iP5A-2	100	0.15	75	0.57	71
	18.5	SV185iP5A-2	125	0.12	96	0.49	91
	22	SV220iP5A-2	150	0.10	112	0.42	107
	30	SV300iP5A-2	200	0.07	160	0.34	152
$400 \mathrm{~V}$Class	0.75	SV008iP5A-4	10	8.63	2.8	16	4.5
	1.5	SV015iP5A-4	10	4.81	4.8	12	7
	2.2	SV022iP5A-4	10	3.23	7.5	8	9
	3.7	SV037iP5A-4	15	2.34	10	6.4	12
	5.5	SV055iP5A-4	20	1.22	15	5.34	14
	7.5	SV075iP5A-4	30	1.14	20	4.04	19
	11	SV110iP5A-4	40	0.81	30	2.76	29
	15	SV150iP5A-4	60	0.61	38	2.18	36
	18.5	SV185iP5A-4	70	0.45	50	1.79	48
	22	SV220iP5A-4	80	0.39	58	1.54	55
	30	SV300IP5A-4	100	0.287	80	1.191	76
	37	SV370iP5A-4	125	0.232	98	0.975	93
	45	SV450iP5A-4	150	0.195	118	0.886	112
	55	SV550iP5A-4	175	0.157	142	0.753	135
	75	SV750iP5A-4	250	0.122	196	0.436	187
	90	SV900iP5A-4	300	0.096	237	0.352	225
	110	SV1100iP5A-4	350	0.081	289	Built-in	
	132	SV1320iP5A-4	400	0.069	341		
	160	SV1600iP5A-4	450	0.057	420		
	220	SV2200iP5A-4	700	0.042	558		
	280	SV2800iP5A-4	800	0.029	799		
	315	SV3150iP5A-4	900	0.029	799	0.090	836
	375	SV3750iP5A-4	1000	0.024	952	0.076	996
	450	SV4500iP5A-4	1200	0.024	952	0.064	1195

[^1]
APPENDIX C- RELATED PARAMETERS

Use	Related parameter codes
Adjusting Accel/Decel time and pattern	DRV-01 [Acceleration Time], DRV-02 [Deceleration Time], FU1-02 [Acceleration Pattern], FU1-03 [Deceleration Pattern]
Reverse rotation prevention	FU1-01 [Run Prevention (Forward/Reverse Prevention)]
Accel/Decel at continuous rating range	FU1-02 [Acceleration Pattern], FU1-03 [Deceleration Pattern]
Adjusting braking operation	FU1-20 [Start Mode], FU1-21~22 [DC Injection Braking Time and Value at Starting], FU1-23 [Stop Mode], FU1-24~27 [DC Injection Braking On-delay Time, Frequency, Time and Value]
Operations at freq. over 60 Hz	FU1-30 [Max. Frequency], FU1-35 [High Limit Frequency], I/O-05 [V1 Input Maximum Voltage], I/O-10 [Frequency Corresponding to I Input Max. Current], I/O-16 [Frequency Corresponding to Pulse Input Max. Freq.]
Selecting an appropriate output characteristics for the load	FU1-30 [Max. Frequency], FU1-31 [Basic Frequency]
Adjusting motor output torque	FU1-32 [Starting Frequency], FU1-71[Stall Prevention Level], FU2-67~69 [Torque Boost], FU2-40 [Motor Capacity Selection]
Output frequency limit	FU1-33~35[Frequency Limit selection, Hihg/Low Limit Freq.], I/O-01~16 [Analog Frequency Setting]
Motor overheat protection	FU1-60~62 [Electronic Thermal Selection and Level], FU2-40 [Motor Capacity Selection], I/O-97, 98 [Overheat trip selection and Motor overtheat trip temperature]
Multi-step operation	I/O-20~27 [Programmable Digital Input Terminal Define], DRV-00 [Command Frequency], 05~07,I/O-31~42 [Multi-step Frequency], FU1-34~35 [Hihg/Low Limit Freq.]
Jog operation	1/O-30 [Jog Frequency Setting]
Frequency jump operation	FU2-10 [Frequency Jump Selection] , FU2-11~16 [Jump Frequency High/Low Limit]
Electronic brake operation Timing	I/O-74,75 [Frequency Detection Level and Bandwidth], I/O-76~79 [Programmable Digital Output Terminal Define]
Display of rotating speed etc.	DRV-09 [Motor Speed (Rpm)], FU2-47 [Gain for Motor Speed Display]
Function change prevention	FU2-94 [Parameter Lock]
Energy saving	FU1-51~52 [Energy Save]
Auto-restart operation after alarm stop	FU2-20 [Power ON Start Selection], FU2-21 [Restart after Fault Reset]
$2^{\text {nd }}$ motor operation	APP-20~29 [2 ${ }^{\text {nd }}$ Function]
PID feedback operation	APP-02~25 [PID Operation]
Adjusting frequency reference and output	I/O-01~16 [Analog Frequency Setting]
Switchover operation between Commercial Line and Inverter	I/O-20~27 [Programmable Digital Input Terminal Define], I/O-76~79 [Programmable Digital Output Terminal Define]
Frequency Meter Calibration	1/O-70~73 [S0/S1 Analog Output]
Operation via Communication with a PC	I/O-90 [Inverter Number], I/O-91 [Baud Rate Selection], I/O-92 [Operation method at loss of freq. reference], 1/O-93 [Wating time after loss of freq. reference]

EC DECLARATION OF CONFORMITY

We, the undersigned,

Representative:
Address:

Manufacturer:
Address:

LSIS Co., Ltd.
LS Tower, 127, LS-ro, Dongan-gu, Anyang-si, Gyeonggi-do, Korea

LSIS Co., Ltd.
56, Samsung 4-gil, Mokchon-Eup, Chonan-si, Chungnam, Korea

Certify and declare under our sole responsibility that the following apparatus:

Type of Equipment:
Model Name:
Trade Mark:

Inverter (Power Conversion Equipment)
SV-IP5A series
LSIS Co., Ltd.

Conforms with the essential requirements of the directives:
2014/35/EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to the making available on the market of electrical equipment designed for use within certain voltage limits

2014/30/EU Directive of the European Parliament and of the Council on the harmonisation of the laws of the Member States relating to electromagnetic compatibility

Based on the following specifications applied:
EN 61800-3:2004/A1:2012
EN 61800-5-1:2007
and therefore complies with the essential requirements and provisions of the 2014/35/CE and 2014/30/CE Directives.

Place:
Chonan, Chungnam, Korea
묨사의 祀 2016.1.13

Mr. Sang Chin Moon / General Manager
(Full name / Position)

EMI / RFI POWER LINE FILTERS

VMC

LS inverters, iP5A series

RFI FILTERS

> THE LS RANGE OF POWER LINE FILTERS FF (Footprint) - FE (Standard) SERIES, HAVE BEEN SPECIFICALLY DESIGNED WITH HIGH FREQUENCY LS INVERTERS. THE USE OF LS FILTERS, WITH THE INSTALLATION ADVICE OVERLEAF HELP TO ENSURE TROUBLE FREE USE ALONG SIDE SENSITIVE DEVICES AND COMPLIANCE TO CONDUCTED EMISSION AND IMMUNITY STANDARS TO EN 50081 -> EN61000-6-3:02 and EN61000-6-1:02

CAUTION

IN CASE OF A LEAKAGE CURRENT PROTECTIVE DEVICES IS USED ON POWER SUPPLY, IT MAY BE FAULT AT POWER-ON OR OFF. IN AVOID THIS CASE, THE SENSE CURRENT OF PROTECTIVE DEVICE SHOULD BE LARGER THAN VALUE OF LEAKAGE CURRENT AT WORST

RECOMMENDED INSTALLATION INSTRUCTIONS

To conform to the EMC directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.
1-) Check the filter rating label to ensure that the current, voltage rating and part number are correct.
2-) For best results the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclousure, usually directly after the enclousures circuit breaker or supply switch.
3-) The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Care should be taken to remove any paint etc... from the mounting holes and face area of the panel to ensure the best possible earthing of the filter.
4 -) Mount the filter securely.
5-) Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.
6-) Connect the motor and fit the ferrite core (output chokes) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both inverter and motor ends. The screen should be connected to the enclousure body via and earthed cable gland.
7-) Connect any control cables as instructed in the inverter instructions manual.
IT IS IMPORTANT THAT ALL LEAD LENGHTS ARE KEPT AS SHORT AS POSSIBLE AND THAT INCOMING MAINS AND OUTGOING MOTOR CABLES ARE KEPT WELL SEPARATED.

EMI/RFI Power Line Filters

iP5A series		/	Footprint Filters							
INVERTER	POWER	CODE	CURRENT	VOLTAGE	LEAKAGE CURRENT	$\begin{aligned} & \text { DIMENSIONS } \\ & \mathrm{L} \quad \mathrm{~W} \quad \mathrm{H} \\ & \hline \end{aligned}$	$\underset{\mathrm{Y}}{\mathrm{MOUNTING}} \mathbf{X}$	WEIGHT	MOUNT	$\begin{aligned} & \text { OUTPUT } \\ & \text { CHOKES } \end{aligned}$
THREE PHASE		$\begin{aligned} & \text { Nom. } \\ & \text { 2 } \end{aligned}$								
SV008iP5A-2	0.75 kW	FFP5-T012-3	12A	250 VAC	$\begin{aligned} & 0.3 \mathrm{~mA}, \\ & 18 \mathrm{~mA} \end{aligned}$	$329 \times 149.5 \times 50$	315×120	1.6 Kg .	M5	FS -1
SV015iP5A-2	1.5 kW									
SV022iP5A-2	2.2kW	FFP5-T020-3	20A	250VAC	$\begin{aligned} & 0.3 \mathrm{~mA} \\ & 18 \mathrm{~mA} \end{aligned}$	$329 \times 149.5 \times 50$	315×120	1.8 Kg .	M5	FS -2
SV037iP5A-2	3.7 kW									
SV055iP5A-2	5.5 kW	FFP5-T040-3	40A	250VAC	$\begin{aligned} & 0.3 \mathrm{~mA} \\ & 18 \mathrm{~mA} \\ & \hline \end{aligned}$	$329 \times 149.5 \times 50$	315×120	2.2 Kg .	M5	FS -2
SV075iP5A-2	7.5kW	FFP5-T050-3	50A	250VAC	$\begin{aligned} & 0.3 \mathrm{~mA} \\ & 18 \mathrm{~mA} \end{aligned}$	329x199.5x60	315×160	2.5 Kg .	M5	FS -2
SV110iP5A-2	11 kW									
SV150iP5A-2	15 kW									
SV185iP5A-2	18kW									
SV220iP5A-2	22 kW									
SV300iP5A-2	30kW									
SV008iP5A-4	0.75 kW	FFP5-T006-3	6A	480VAC	$\begin{aligned} & 0.3 \mathrm{~mA} \\ & 18 \mathrm{~mA} \end{aligned}$	$329 \times 149.5 \times 50$	315×120	1.6 Kg .	M5	FS -1
SV015iP5A-4	1.5 kW									
SV022iP5A-4	2.2 kW	FFP5-T012-3	12A	480VAC	$\begin{aligned} & 0.3 \mathrm{~mA} \\ & 18 \mathrm{~mA} \end{aligned}$	$329 \times 149.5 \times 50$	315×120	1.6 Kg .	M5	FS -1
SV037iP5A-4	3.7 kW									
SV055iP5A-4	5.5 kW	FFP5-T030-3	30A	480VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	329x149.5x50	315×120	2 Kg .	M5	FS -2
SV075iP5A-4	7.5kW	FFP5-T031-3	31A	480VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	$329 \times 199.5 \times 60$	315×160	2.5 Kg .	M5	FS -2
SV110iP5A-4	11kW	FFP5-T050-3	50A	480VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	329x199.5x60	315×160	2.5 Kg .	M5	FS -2
SV150iP5A-4	15kW	FFP5-T060-3	60A	480VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	$466 \times 258 \times 65$	440.5×181	2.8 Kg .	M5	FS -2
SV185iP5A-4	18kW									
SV220iP5A-4	22 kW	FFP5-T070-3	70A	480VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	$541 \times 312 \times 65$	515.5×235.3	6.1 Kg .	M8	FS - 2
SV300iP5A-4	30kW									

iP5A series		/	Standard Filters							
INVERTER	POWER	CODE	CURRENT	VOLTAGE	LEAKAGE CURRENT	$\begin{aligned} & \text { DIMENSIONS } \\ & \text { L } \quad \mathrm{W} \\ & \hline \end{aligned}$	MOUNTING Y X	WEIGHT	MOUNT	OUTPUT CHOKES
THREE PHASE					$\begin{aligned} & \text { NoM. } \\ & \text { MAX. } \end{aligned}$					
SV008iP5A-2	0.75 kW	FE-T012-3	12A	250 VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	250x110x60	238x76	1.6 Kg .	---	FS -1
SV015iP5A-2	1.5kW									
SV022iP5A-2	2.2kW	FE-T020-3	20A	250VAC	0.5 mA 27 mA	270x140x60	258x106	2.4 Kg .	---	FS-2
SV037iP5A-2	3.7kW									
SV055iP5A-2	5.5kW	FE-T050-3	50A	250VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	270x140x90	258x106	3.2 Kg .	---	FS - 2
SV075iP5A-2	7.5 kW									
SV110iP5A-2	11kW	FE-T100-3	100A	250 VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$	420x200x130	408×166	13.8 Kg .	---	FS - 3
SV150iP5A-2	15kW									
SV185iP5A-2	18kW	FEP-T150	150A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$	$332 \times 170 \times 120$	115x155	8 Kg .	---	FS - 3
SV220iP5A-2	22kW									
SV300iP5A-2	30kW	FEP-T180	180A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \\ & \hline \end{aligned}$	$332 \times 170 \times 120$	115x155	8.4 Kg .	---	FS - 3
SV008iP5A-4	0.75kW	FE-T006-3	6A	480VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	250x110x60	238x76	1.6 Kg .	---	FS-2
SV015iP5A-4	1.5kW									

EMI/RFI Power Line Filters

iP5A series		1 Standard Filters								
INVERTER	POWER	CODE	CURRENT	VOLTAGE	LEAKAGE CURRENT	$\begin{aligned} & \text { DIMENSIONS } \\ & \mathrm{L} \quad \mathrm{~W} \quad \mathrm{H} \\ & \hline \end{aligned}$	MOUNTING	WEIGHT	MOUNT	OUTPUT CHOKES
THREE PHASE					NOM.					
SV022iP5A-4	2.2kW	FE-T012-3	12A	480VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	250x110x60	238x76	1.6 Kg .	---	FS -2
SV037iP5A-4	3.7 kW									
SV055iP5A-4	5.5 kW	FE-T030-3	30A	480VAC	0.5 mA 27 mA	270x140x60	258x106	2.4 Kg .	---	FS -2
SV075iP5A-4	7.5 kW									
SV110iP5A-4	11 kW	FE-T050-3	50A	480VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	270x140x90	258x106	3.2 Kg .	---	FS -2
SV150iP5A-4	15 kW									
SV185iP5A-4	18kW	FE-T070-3	70A	480VAC	$\begin{aligned} & 0.5 \mathrm{~mA} \\ & 27 \mathrm{~mA} \end{aligned}$	350x180x90	338×146	7.5 Kg .	---	FS - 3
SV220iP5A-4	22kW									
SV300iP5A-4	30kW	FE-T100-3	100A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$	420×200×130	408x166	13.8 Kg.	---	FS - 3
SV370iP5A-4	37 kW									
SV450iP5A-4	45 kW	FEP-T150	150A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$	$332 \times 170 \times 120$	115x155	8 Kg .	---	FS - 3
SV550iP5A-4	55 kW									
SV750iP5A-4	75kW	FEP-T180	180A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \\ & \hline \end{aligned}$	$332 \times 170 \times 120$	115x155	8.4 Kg .	---	FS - 3
SV900iP5A-4	90kW	FEP-T250	250A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \\ & \hline \end{aligned}$	$392 \times 190 \times 116$	240x165	9.1 Kg .	---	FS-4
SV1100iP5A-4	110kW	FEP-T400	400A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$	$392 \times 260 \times 116$	240×235	10.3 Kg .	---	FS-4
SV1320iP5A-4	132kW									
SV1600iP5A-4	160kW	FEP-T600	600A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$	$392 \times 260 \times 116$	240×235	11 Kg .	---	FS-4
SV2200iP5A-4	220kW									
SV2800iP5A-4	280kW	FEP-T1000	1000A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$	$460 \times 280 \times 166$	290x255	18 Kg .	---	FS-4
SV3150iP5A-4	315kW									
SV3750iP5A-4	375kW									
SV4500iP5A-4	450kW	FEP-T1600	1600A	480VAC	$\begin{aligned} & 1.3 \mathrm{~mA} \\ & 150 \mathrm{~mA} \end{aligned}$	$592 \times 300 \times 166$	340×275	27 Kg .	---	FS - 4

SV008~037 iP5A-2/4	EN 55011	CLASS B	GROUP 1	IEC/EN 61800-3	C1
SV055~075 iP5A-2/4	EN 55011	CLASS A/B	GROUP 1	IEC/EN 61800-3	C1/C2
SV110~220 iP5A-2/4	EN 55011	CLASS A	GROUP 1/2	IEC/EN 61800-3	C2/C3
SV300~4500 iP5A-24	EN 55011	CLASS A	GROUP 2	IEC/EN 61800-3	C3

FS SERIES (output chokes)

CODE	D	W	H	X	$\boldsymbol{\varnothing}$
FS - 1	21	85	46	70	5
FS - 2	28.5	105	62	90	5
FS - 3	48	150	110	125×30	5
FS - 4	58	200	170	180×45	5

EMI/RFI Power Line Filters

DIMENSIONS

FF SERIES (Footprint)

FFP5-T006-3 ~ FFP5-T070-3

FE SERIES (Standard)

FE-T006-2 ~ FE-T100-2

ector Motor Control Ibérica S.L C/ Mar del Carib, 10

Warranty period is 12 months after installation or 18 months after manufactured when the installation date is unidentified. However, the guarantee term may vary on the sales term.

- IN-WARRANTY service information

If the defective part has been identified under normal and proper use within the guarantee term, contact your local authorized LS distributor or LS Service center.

■ OUT-OF WARRANTY service information

The guarantee will not apply in the following cases, even if the guarantee term has not expired.

- Damage was caused by misuse, negligence or accident.
- Damage was caused by abnormal voltage and peripheral devices' malfunction (failure).
- Damage was caused by improper repair or altering by other than LS authorized distributor or service center.
- Damage was caused by an earthquake, fire, flooding, lightning, or other natural calamities.
- When LS nameplate is not attached.
- When the warranty period has expired.

Revision History

No.	Date	Edition	Changes
1	October, 2004	First Release	-
2	June, 2005	$2^{\text {nd }}$ Edition	Cl changed
3	June, 2006	$3^{\text {rd }}$ Edition	Revised for new kW(HP) ratings
4	November, 2006	$4^{\text {th }}$ Edition	S/W Version up (V0.4)
5	December, 2006	$5^{\text {th }}$ Edition	Contents added and revised
6	June, 2008	$6^{\text {th }}$ Edition	Contents added and revised
7	April, 2009	$7^{\text {th }}$ Edition	New Controller contents added
8	Dec, 2010	$8^{\text {th }}$ Edition	EMI / RFI power line filters changed
9	Dec 2011	$9^{\text {th }}$ Edition	UL Making Changed
10	Dec 2014	$10^{\text {th }}$ Edition	SW Version Up 2.3 \& error revised .
11	Aug 2015	$11^{\text {th }}$ Edition	Single-Phase input application and UL/CE/EAC Mark added.
12	JAN 2016	$12^{\text {th }}$ Edition	CE Doc revised

[^0]: $0.75 \sim 30 \mathrm{~kW}$ products: Common terminal of frequency setting is 5G terminal.

 - 37 ~ 450 kW products: Common terminal of frequency setting is CM terminal.

[^1]: * Use circuit breaker $1.5 \sim 2$ time to output rated current of inverter

