

Innovating Energy Technology

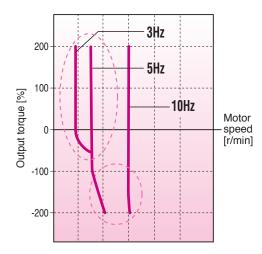
Compact inverter FRENIC-Mini Series

24A1-E-0011d Dealers Industrial Equipment -- Visit <u>https://DealersElectric.com</u> or call (908) 688-1966 for all of your electric motor & VFD needs High Performance and Multipurpose Fully Compatible with Existing Products Easy Operation and Maintenance

New Compact Inverter

High Performance Compact Body. Get Our Most User-Friendly Inverter yet!

NEXT Generation! COMPACT INVERTER FRENIC


FUJI ELECTRIC INVERTERS High Perfomance Compact Body. Welcome to the NEXT Generation of Compact Inverter

With its functionality, compact design, simple operation, and global compatibility, the new FRENIC-Mini elevates the performance of a wide range of devices and equipment--including conveyors, fans, pumps, centrifugal separators, and food processing machines--to give you the system integration, energy efficiency, reduced labor, and lower overall costs you're looking for.

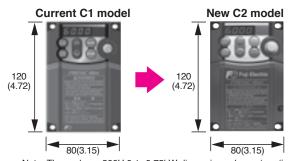
Dealers Industrial Equipment -- Visit <u>https://DealersElectric.com</u> or call (908) 688-1966 for all of your electric motor & VFD needs

High Performance and Multipurpose

• Dynamic Torque Vector Control System

Fuji Electric original dynamic torque vector control system is known for its top-of-the line performance, delivering stabile torque output even at low speeds. This feature has a wide range of applications, including conveyors and high-inertia loads that demand high starting torque.

Slip Compensation shortens setting time


The slip compensation controller works with voltage tuning for even more accurate speed control at low velocity. This reduces speed control variability and stabilizing creep speed for more accurate stopping in conveyors and similar equipment.

Fastest CPU Processor in its Class

Advanced CPU processes data at twice the speed of our current model

Full Compatibility and User Friendly Design

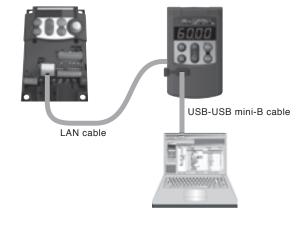
External dimensions	Interchangeable			
Installed dimensions	Interchangeable			
Number of terminals	Same for both main circuit and controllers			
Terminal position	Compatible terminal wire length			
Function codes	Compatible function codes			
RS-485 communication	Shared communications protocol			

Note: Three-phase 200V 0.1-0.75kW dimensions shown (mm(inch))

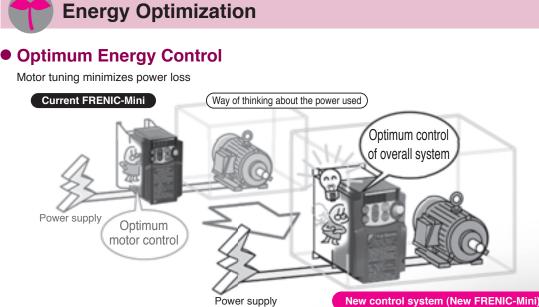
Easy Operation and Maintenance

Usability

Delivers all the usability of the C1. Provides volume of frequency and the same ease of operation as the current model.



Improve Maintainability


Function	Description		
Mock malfunction	Select a function to set off a mock alarm		
Number of startups	Count the total number of ON/OFF run cycles		
Cumulative motor running time	Monitor motor run time		
Total power	Set to measure total power consumption		
Trip history	Saves and displays information on up to four past trips		

•USB Keypad

Optional USB keypad available. Enhanced PC loader software (FRENIC Loader) connectivity.

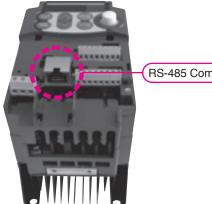
· FRENIC Loader available as a free download

• PID Control Function

Permits motor operation while controlling temperature, pressure, and flow rate without the use of a temperature controller or other external device

Cooling Fan ON/OFF Control Function

The cooling fan can be switched off when the fan or pump is not running to reduce both noise and energy consumption


Synchronous Motor Control

Use of sensorless synchronous motor control together with the motor can reduce energy consumption

	Notwork	Capabilities
	Nelwork	Capabilities
٢.,		

RS-485 Communications Port as Standard

Communications can be controlled through the standard RS-485 communications port using the Modbus-RTU or Fuji Electric inverter protocol

RS-485 Communication Port

New control system (New FRENIC-Mini)

Other Features

• Functions for User Applications

V/F (non-linear 3 step) Two motor parameter sets Brake signal (brake release signal) Rotational direction control (prevent forward/reverse movement)

Global Standard

EC Directives (CE making)

Dealers Industrial Equipment -- Visit https://DealersElectric.com or call (908) 688-1966 for all of your electric motor & VFD needs

Variation

Nominal Applied Motor (kW)[HP]	Three-phase 200V series	Three-phase 400V series	Single-phase 200V series	Single-phase 100V series
Standard specifications	s			
Without EMC filter type	•			
0.1 [1/8]	FRN0001C2S-2		FRN0001C2S-7	FRN0001C2S-6U
0.2 [1/4]	FRN0002C2S-2		FRN0002C2S-7	FRN0002C2S-6U
0.4 [1/2]	FRN0004C2S-2	FRN0002C2S-4	FRN0004C2S-7	FRN0003C2S-6U
0.75 [1]	FRN0006C2S-2	FRN0004C2S-4	FRN0006C2S-7	FRN0005C2S-6U
1.5 [2]	FRN0010C2S-2	FRN0005C2S-4	FRN0010C2S-7	
2.2 [3]	FRN0012C2S-2	FRN0007C2S-4	FRN0012C2S-7	
3.7 [5]	FRN0020C2S-2	FRN0011C2S-4		
5.5 [7.5]	FRN0025C2S-2	FRN0013C2S-4		
7.5 [10]	FRN0033C2S-2	FRN0018C2S-4		
11 [15]	FRN0047C2S-2	FRN0024C2S-4		
15 [20]	FRN0060C2S-2	FRN0030C2S-4		
Destination	A(Asia), U(USA)	A(Asia), C(China), E	E(Europe), U(USA)	U(USA)
Semi-standard specific	ations			
EMC filter built-in type				
0.1 [1/8]			FRN0001C2E-7E	
0.2 [1/4]			FRN0002C2E-7E	
0.4 [1/2]		FRN0002C2E-4E	FRN0004C2E-7E	
0.75 [1]		FRN0004C2E-4E	FRN0006C2E-7E	
1.5 [2]		FRN0005C2E-4E	FRN0010C2E-7E	
2.2 [3]		FRN0007C2E-4E	FRN0012C2E-7E	
3.7 [5]		FRN0011C2E-4E		
5.5 [7.5]		FRN0013C2E-4E		
7.5 [10]		FRN0018C2E-4E		
11 [15]		FRN0024C2E-4E		
15 [20]		FRN0030C2E-4E		
Destination		E(Eur	rope)	

How To Read Model Number FRN 0010 C2S - 4A Code Series Name Code Destination/Manual FRENIC series FRN A C Asia/English China/Chinese Applicable Current Rating Е Europe/English This value shows an amperage rating U USA/English 0001~0060 Code Input Power Source Code Application Range Three-phase 200V 2 С Compact Three-phase 400V 4 6 Single-phase 100V Code Developed Inverter Series 7 Single-phase 200V 2 2-series Code Enclosure Standard (IP20) (UL Open Type) S Е EMC filter built-in type

Caution

The contents of this catalog are provided to help you select the product model that is best for you. Before actual use, be sure to read the User's Manual thoroughly to assure correct operation.

Standard Model

Specifications

Three-phase 200V series

	Item						S	pecificatior	ıs				
Inpu	ut power source		Three-pha	se 200V									
Тур	e		FRN C2S-2A, FRN C2S-2U										
(FR	NC2S-	2△, △=A, U)											
			0001	0002	0004	0006	0010	0012	0020	0025	0033	0047	0060
Nor	ninal applied mo	tor[kW](△=A)	0.1	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15
Nor	ninal applied mo	tor[HP](△=U)	1/8	1/4	1/2	1	2	3	5	7.5	10	15	20
	Rated capacity	[kVA]	0.30	0.57	1.3	2.0	3.5	4.5	7.2	9.5	12	17	22
sốu	Rated voltage[V]	Three-pha	se 200 to 240	V (With AVR	i)							
ratir	Rated current[/	A](*1)	0.8(0.7)	1.5(1.4)	3.5(2.5)	5.5(4.2)	9.2(7.0)	12.0(10.0)	19.1(16.5)	25.0(23.5)	33.0(31.0)	47.0(44.0)	60.0(57.0)
Output ratings	Overload capa	bility	150% of rated current for 1 min 150% of rated current for 1 min or 200% of rated current for 0.5s (If the rated current is in parenthesis) 150% of rated current for 1 min or 200% of rated current for 0.5s										
	Rated frequence	cy[Hz]	50, 60Hz										
	Phases, Voltag	e, Frequency	Three-pha	Three-phase, 200 to 240V, 50/60Hz									
Input ratings	Voltage/Freque	ncy variations	Voltage: +10 to -15% (Voltage unbalance : 2% or less), Frequency: +5 to -5%										
tt rat	Rated current[A]	(with DCR)	0.57	0.93	1.6	3.0	5.7	8.3	14.0	21.1	28.8	42.2	57.6
ndul		(without DCR)	1.1	1.8	3.1	5.3	9.5	13.2	22.2	31.5	42.7	60.7	80.0
_	Required power sup	ply capacity[kVA]	0.2	0.3	0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
g	Torque[%]		150		100		50	30		20			
Braking	DC injection br	aking	Starting fre	equency: 0.0	to 60.0Hz, Br	aking time: 0	.0 to 30.0s E	sraking level:	0 to 100%				
ā	Braking transis	tor	-		Built-in								
App	licable safety sta	andards	UL508C, E	N 61800-5-1	:2007								
Enc	losure (IEC 605	29)	IP20 (IEC	60529:1989)	/ UL open typ	be (UL50)							
Coc	ling method		Natural co	oling			Fan coolin	g					
Weight / Mass[kg(lbs)]			0.6(1.3)	0.6(1.3)	0.7(1.5)	0.8(1.8)	1.7(3.7)	1.7(3.7)	2.5(5.5)	3.1(6.8)	3.1(6.8)	4.5(9.8)	4.5(9.8)
'1 Th	The load shall be reduced so that the continuous operating current is the rated current in parenthesis or less if the carrier frequency is set to 3kHz or above or ambient temperature exceeds 40°C (104°F).												

Three-phase 400V series

	Item					:	Specifications	;			
Inpu	it power source		Three-phase 400V								
Тур	э		FRNC2S-4A, FRNC2S-4C								
(FRN	(FRNC2S-4△, △=A, C, E, U)		FRNC2S-4E, FRNC2S-4U								
			0002	0004	0005	0007	0011	0013	0018	0024	0030
Non	ninal applied mo	tor[kW]	0.4	0.75	1.5	2.2	3.7(△= A, C)	5.5	7.5	11	15
(△=	=A, C, E)						4.0(△= E)				
Non	ninal applied mo	tor[HP](△ =U)	1/2	1	2	3	5	7.5	10	15	20
	Rated capacity	[kVA]	1.3	2.3	3.2	4.8	8.0	9.9	13	18	22
sɓเ	Rated voltage[V]	Three-phase	380 to 480V (Wi	th AVR)						
ratir	Rated current[A	A](*1)	1.8(1.5)	3.1(2.5)	4.3(3.7)	6.3(5.5)	10.5(9.0)	13.0	18.0	24.0	30.0
Output ratings	Overload capal	bility		150% of rated current for 1 min or 200% of rated current for 0.5s (If the rated current is in parenthesis) 200% of rated current for 0.5s							
	Rated frequence	y[Hz]	50, 60Hz								
	Phases, Voltag	e, Frequency	Three-phase, 380 to 480V, 50/60Hz								
Input ratings	Voltage/Freque	ncy variations	Voltage: +10 to -15% (Voltage unbalance : 2% or less), Frequency: +5 to -5%								
t rati	Rated current[A]	(with DCR)	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8
ndu		(without DCR)	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8
	Required power sup	ply capacity[kVA]	0.6	1.1	2.0	2.9	4.9	7.4	10	15	20
þ	Torque[%]		100		50	30		20			
Braking	DC injection br	aking	Starting frequ	ency: 0.0 to 60.0) Hz, Braking tim	ne: 0.0 to 30.0s	Braking level: 0	to 100%			
Ē	Braking transis	tor	Built-in								
App	licable safety sta	andards	UL508C, EN 61800-5-1:2007								
Enc	losure (IEC 605	29)	IP20 (IEC 605	529:1989) / UL o	pen type (UL50)					
Coo	ling method		Natural coolin	g	Fan cooling						
Wei	ght / Mass[kg(lb	s)]	1.2(2.6)	1.3(2.9)	1.7(3.7)	1.7(3.7)	2.5(5.5)	3.1(6.8)	3.1(6.8)	4.5(9.8)	4.5(9.8)

*1 The load shall be reduced so that the continuous operating current is the rated current in parenthesis or less if the carrier frequency is set to 3kHz or above or ambient temperature exceeds 40°C (104°F).

Specifications

Single-phase 200V/100V series

	Item						Specifi	cations				
Inp	ut power source		Single-phase	e 200V					Single-phas	e 100V		
Тур	e		FRNC2S-7A, FRNC2S-7C					FRN 🗌 🗌 🗌	C2S-6U			
(FRI	NC2S	△, <i>△</i> =A, C, E, U)	FRN	C2S-7E, FF		S-7U						
		0001	0002	0004	0006	0010	0012	0001	0002	0003	0005	
Nor	ninal applied mo	otor[kW]	0.1	0.2	0.4	0.75	1.5	2.2	0.1	0.2	0.4	0.75
(△	=A, C, E)											
Nor	ninal applied mo	tor[HP](△=U)	1/8	1/4	1/2	1	2	3	1/8	1/4	1/2	1
	Rated capacity	[kVA]	0.30	0.57	1.3	2.0	3.5	4.5	0.26	0.53	0.95	1.6
sb	Rated voltage[V]	Three-phase 200 to 240V (With AVR)									
ratir	Rated current[/	A](*1)	0.8(0.7)	1.5(1.4)	3.5(2.5)	5.5(4.2)	9.2(7.0)	12.0(10.0)	0.7	1.4	2.5	4.2
Output ratings	Overload capa	bility	150% of rated current for 1min 150% of rated current for 1min or 200% of rated current for 0.5s (If the rated current is in parenthesis)					150% of rated current for 1min or 200% of rated current for 0.5s				
	Rated frequend	cy[Hz]	50, 60Hz	50, 60Hz								
	Phases, Voltag	je, Frequency	Single-phas	Single-phase, 200 to 240V, 50/60Hz					Single-phas	e 100 to 120V	, 50/60Hz	
Input ratings	Voltage/Freque	ncy variations	Voltage: +10) to -10%, Free	quency: +5 to -	5%						
trat	Rated current[A]	(with DCR)	1.1	2.0	3.5	6.4	11.6	17.5	2.2	3.8	6.4	12.0
ndu		(without DCR)	1.8	3.3	5.4	9.7	16.4	24.0	3.6	5.9	9.5	16.0
	Required power sup	oply capacity[kVA]	0.3	0.4	0.7	1.3	2.4	3.5	0.3	0.5	0.7	1.3
þ	Torque[%]		150		100		50	30	150		100	
Braking	DC injection br	aking	Starting freq	uency: 0.0 to	60.0Hz, Brakin	g time: 0.0 to	30.0s, Braking	level: 0 to 100)%			
ā	Braking transis	tor	-		Built-in				-		Built-in	
App	licable safety st	andards	UL508C, EN	l 61800-5-1:20	007				UL508C			
Enc	losure (IEC 605	29)	IP20 (IEC 60)529:1989) / L	IL open type (l	JL50)						
Coo	oling method		Natural cool	ing			Fan cooling		Natural cooling			
We	ight / Mass[kg(lb	s)]	0.6(1.3)	0.6(1.3)	0.7(1.5)	0.9(2)	1.8(4)	2.5(5.5)	0.7(1.5)	0.7(1.5)	0.8(1.8)	1.3(2.9)

*1 The load shall be reduced so that the continuous operating current is the rated current in parenthesis or less if the carrier frequency is set to 3kHz or above or ambient temperature exceeds 40°C (104°F).

EMC Filter Built-in Model

Specifications

Three-phase 400V series

	Item						Specifications	3				
Inp	ut power source		Three-phase	Three-phase 400V								
Тур	e		FRN C2E-4E									
(FF	N C2E	-4E)	0002	0004	0005	0007	0011	0013	0018	0024	0030	
No	minal applied mo	otor[kW]	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	
No	minal applied mo	otor[HP]	1/2	1	2	3	5	7.5	10	15	20	
	Rated capacity	/[kVA]	1.3	2.3	3.2	4.8	8.0	9.9	13	18	22	
sb	Rated voltage	[V]	Three-phase	380 to 480V (W	ith AVR)							
ratir	Rated current[A](*1)	1.8(1.5)	3.1(2.5)	4.3(3.7)	6.3(5.5)	10.5(9.0)	13	18	24	30	
Output ratings	Overload capa	ıbility		d current for 1mi rent for 1min or 200%	n o of rated current for (0.5s (If the rated curre	ent is in parenthesis)		d current for 1mi d current for 0.5			
	Rated frequen	cy[Hz]	50, 60Hz	50, 60Hz								
	Phases, Voltag	nases, Voltage, Frequency Three-phase, 380 to 480V, 50/60Hz										
Input ratings	Voltage/Freque	ency variations	ons Voltage: +10 to -15% (Voltage unbalance : 2% or less), Frequency: +5 to -5%									
t rat	Rated current[A]	(with DCR)	0.85	1.6	3.0	4.4	7.3	10.6	14.4	21.1	28.8	
ndul		(without DCR)	1.7	3.1	5.9	8.2	13.0	17.3	23.2	33.0	43.8	
	Required power su	pply capacity[kVA]	0.6	1.1	2.0	2.9	4.9	7.4	10	15	20	
g	Torque[%]		100		50	30		20				
Braking	DC injection b	raking	Starting frequ	ency: 0.0 to 60.	0Hz, Braking tim	ie: 0.0 to 30.0s	Braking level: 0	0 to 100%				
ģ	Braking transis	stor	Built-in									
App	licable safety st	andards	UL508C, EN	61800-5-1:2007								
(ĖŃ	blicable EMC sta l61800-3:2004 + progress)	andards -A1:2012)	Immunity : Se Emission : Ca	cond Environme tegory C2	ent (Industrial)			Immunity : Se Emission : Ca	cond Environme ategory C3	ent (Industrial)		
End	losure (IEC 605	529)	IP20 (IEC 605	529:1989) / UL c	pen type (UL50)						
Co	oling method		Natural coolir	g	Fan cooling							
We	ight / Mass[kg(lt	os)]	1.5(3.3)	1.6(3.5)	3.0(6.6)	3.1(6.8)	3.2(7.1)	4.6(10.1)	4.6(10.1)	6.7(15)	6.7(15)	

*1 The load shall be reduced so that the continuous operating current is the rated current in parenthesis or less if the carrier frequency is set to 3kHz or above or ambient temperature exceeds 40°C (104°F).

Single-phase 200V series

	Item				Specifi	cations					
Inpu	It power source		Single-phase 200V								
Тур	Туре		FRN C2E-7E								
(FR	N C2E-	7E)	0001	0002	0004	0006	0010	0012			
Nor	ninal applied mo	tor[kW]	0.1	0.2	0.4	0.75	1.5	2.2			
Nor	ninal applied mo	tor[HP]	1/8	1/4	1/2	1	2	3			
	Rated capacity	[kVA]	0.30	0.57	1.3	2.0	3.5	4.5			
số	Rated voltage[/]	Three-phase, 200 to 2	240V, 50/60Hz							
ratir	Rated current[A	A](*1)	0.8(0.7)	1.5(1.4)	3.5(2.5)	5.5(4.2)	9.2(7.0)	12.0(10.0)			
Output ratings	Overload capa	oility	150% of rated current 150% of rated current	enthesis)							
	Rated frequence	y[Hz]	50, 60Hz	50, 60Hz							
	Phases, Voltag	e, Frequency	Single-phase, 200 to 2	240V, 50/60Hz							
Input ratings	Voltage/Frequency variations		Voltage: +10 to -10%, Frequency: +5 to -5%								
t rat	Rated current[A]	(with DCR)	1.1	2.0	3.5	6.4	11.6	17.5			
ndu		(without DCR)	1.8	3.3	5.4	9.7	16.4	24.0			
	Required power sup	ply capacity[kVA]	0.3	0.4	0.7	1.3	2.4	3.5			
g	Torque[%]		150		100		50	30			
Braking	DC injection br	aking	Starting frequency: 0.	0 to 60.0Hz, Braking tim	e: 0.0 to 30.0s, Braking	level: 0 to 100%					
ā	Braking transis	tor	-		Built-in						
Арр	licable safety sta	andards	UL508C, EN 61800-5	-1:2007							
(ĖŃ	licable EMC sta 61800-3:2004 + progress)	ndards A1:2012)	Immunity : Second Environment (Industrial) Emission : Category C2								
Enc	losure (IEC 605	29)	IP20 (IEC 60529:1989	9) / UL open type (UL50)						
Coc	ling method		Natural cooling				Fan cooling				
Wei	ght / Mass[kg(lb	s)]	0.7(1.5)	0.7(1.5)	0.8(1.8)	1.2(2.6)	3.0(6.6)	3.0(6.6)			

*1 The load shall be reduced so that the continuous operating current is the rated current in parenthesis or less if the carrier frequency is set to 3kHz or above or ambient temperature exceeds 40°C (104°F).

Common Specifications

Common Specifications

		Item	Explanation	Remarks					
		Maximum frequency	25 to 400Hz	nemarks					
		Base frequency	25 to 400Hz						
	ge		0.1 to 60.0Hz						
Output frequency	Setting rang	Carrier frequency	0.75 to 16kHz Note: The unit is equipped with an automatic reduction/stop function that ma protect the inverter when it is running at frequencies above 6 kHz, dependin other conditions. (*1)						
out fi			Under modulated carrier conditions, the system scatters carrier frequency	to reduce noise					
Outp	Ac	ccuracy (stability)	Analog setting: : Absolute accuracy within $\pm 2\%$ (at $25^{\circ}C(77^{\circ}F)$), temperate Keypad setting: : Absolute accuracy within $\pm 0.01\%$ (at $25^{\circ}C(77^{\circ}F)$), temperate Associated as the setting of the setting o						
	Se	etting resolution	Analog setting : 1/1000 of maximum frequency Keypad setting : 0.01Hz (99.99Hz or less), 0.1Hz (100.0Hz to 400.0Hz) Link operation : 1/20000 of maximum frequency or 0.01Hz (fixed))					
	Сс	ontrol method	Induction motor drive • V/f control • Slip compensation • Automatic torque boost • Dynamic torque vector control • Automatic energy-saving function						
			Synchronous motor drive · Sensorless magnetic positioning (speed control range: 10% of base frequency and up)						
			Base frequency and maximum output frequency can each be s 200V series AVR control (*1) can be turned ON or OFF Allowable non-linear V/f (*1) settings (2): optional voltage (0–2						
	Vo	oltage/freq. characteristic	Allowable non-linear V/I (1) settings (2): optional voltage (0–240V) and requercy (0–400Hz) Base frequency and maximum output frequency can each be set between :160 to 500 AVR control (*1) can be turned ON or OFF Allowable non-linear V/I (*1) settings (2): optional voltage (0–500V) and frequency (0–400Hz)						
			Automatic torque boost (for constant torque loads)						
	То	orque boost (*1)	Manual torque boost: Optional torque boost value can be set between 0.0 and 20.0%						
		, (-/	Application load can be selected (for constant and variable torque loads)						
ŀ	St	arting torque (*1)	150% or more/frequency set to 3Hz Slip compensation /automatic torque b	oost active					
			Keypad operation : Start and stop with Run, stop keys (standard keypad) : Start and stop with Run, stop keys (remote keypad)	pad)					
	Sta	art/stop	External signals : FWD (REV) operation/stop command [3-wire ope (digital input) Coast-to-stop command, trip command (external						
tro			Link operation : Communication via RS-485						
Contro			Changing run command: Communications used to change run command						
			Keypad operation : Can be set with or very key (with save data fr Also can be set with function code (only via communication) and be copied.						
			Set based on built-in volume						
			Analog input : 0 to +10V DC/0 to 100% (terminal 12) : 4 to +20mA DC/0 to 100%, 0 to +20mA DC/0 to 10	00% (terminal C1)					
	Fr	equency setting	Multistep frequency : Selectable from 16 steps (step 0 to 15)						
			UP/DOWN operation : Raises or lowers frequency while digital input sign	al is ON					
			Link operation: : Frequency set through RS-485 communication						
			Changing frequency settings : Two types of frequency settings can be changed u settings and multistep frequency settings	using external signals (digital input) : frequency					
			Auxiliary frequency setting : Built-in potentiometer, Inputs at terminal 12, C1 can be	added to the main setting as auxiliary frequency settings.					
			Inverse operation : Can be switched from (DC 0 to +10V/0 to 100%) t : Can be switched from (DC 4 to 20mA (DC 0-20mA)/0 to 10	o (DC +10 to 0V/0 to 100%) externally 00%) to (DC 20 to 4mA (DC 20–0mA)/0 to 100%) externally					
	Acc	celeration/deceleration time	Can be set between 0.00 and 3600s There are two independent settings that can be selected for acceleration/d Pattern : The following four acceleration/deceleration types can be selected Linear, S-curve (weak/strong), non-linear (constant output maximum capac Coast-to-stop acceleration/deceleration is enabled when run commands ar Acceleration/deceleration time can be set during jogging operation (between	d bity acceleration/deceleration) re OFF					

*1 Only valid when induction motor drive is in operation

Fea

Common Specifications

Common Specifications

Item	Explanation	Remarks
Frequency limiter (Peak/bottom frequency limit)	High and low limiters can be set in addition to Hz values (0-400Hz)	
Bias frequency	Bias of set frequency and PID command can be set separately between 0 and ±100%	
Gain for frequency setting	Analog input gain can be set between 0 and 200%	
Jump frequency control	Three operation points and their common jump hysteresis width can be set (0–30Hz) Six operation points and their common jump hysteresis width can be set (0–30Hz) (*2)	
Timer operation	Operation starts and stops at the time set from keypad (1 cycle)	
Jogging operation (*1)	Operated using the Rus key (on the standard or remote keypad) or digital contact point input (acceleration and deceleration timesame duration used only for jogging)	
Auto-restart after momentary power failure (*1)	 Trip at power failure: The inverter trips immediately after power failure. Trip at power recovery: Coast-to-stop at power failure and trip at power recovery Deceleration stop: Deceleration stop at power failure, and trip after stoppage (*2) Start at the frequency selected before momentary stop: Coast-to-stop at power failure and start after power recovery at the frequency selected before momentary stop. Start at starting frequency: Coast-to-stop at power failure and start at the starting frequency after power recovery. 	
Current limit by hardware (*1)	Uses hardware to limit current and prevent overcurrent trips resulting from sudden load changes, momentary power failures, and similar events that cannot be handled by software current limiters (can be canceled)	
Slip compensation (*1)	Compensates for decrease in speed according to the load, enabling stable operation	
Slip compensation (*1) Current limit	Keeps the current under the preset value during operation	
PID control	Process PID regulator · PID command, keyboard, analog input (terminal 12, C1), RS-485 communication · Feedback value: Analog input (terminal 12, C1) · Low liquid level stop function · Switch forward/reverse operation · Integration reset/hold function	
Automatic deceleration	Automatically limits output frequency, limits energy generated by the inverter, and avoids overcurrent trips when torque relay value is exceeded (*1) Makes deceleration time three times longer to avoid GU trip when DC link circuit voltage exceeds overage limit	
Deceleration characteristics (improved braking capacity)	Increases motor loss and reduces energy generated by the inverter during deceleration to avoid overcurrent trips	
Energy saving operation (*1)	Restricts output voltage to minimize total motor and inverter loss during constant speed operation	
Overload prevention control	Lowers frequency when IGBT junction temperature and ambient temperature rise due to overloading to avoid further overload	
Offline tuning (*1)	Performs r1, $X\sigma$, and excitation current tuning Performs r1, $X\sigma$, slip frequency and excitation current tuning (*2)	
Fan stop operation	Detects inverter internal temperature and stops cooling fan when the temperature is low	
Secondary motor settings	Switching between two motors in the same inverter is enabled (switching cannot be performed while the inverter is running) Induction motor settings can only be applied to the second motor Data settings (base frequency, rated current, torque boost, electronic thermal, and slip compensation, etc.) can be entered for the second motor Constants can be set within the second motor. Auto-tuning is also enabled.	
Rotational direction limits	Select either prevent reverse or prevent forward operation	
Running/stopping	Speed monitor, output current [A], output voltage [V], input power [kW], PID reference, PID feedback value, PID output, timer value (for timer operation) [s], total power amount Select the speed monitor to be displayed from the following: Output frequency (before slip compensation) [Hz], output frequency (after slip compensation) [Hz], set frequency [Hz], load shaft speed [min ⁻¹], line speed [m/min], constant rate of feeding time [min]	
Lifetime alarm	Displays the lifetime alarm for the main circuit condenser, PCB condenser, and cooling fan. External output is enabled for lifetime alarm information.	
Total running time	Can display total motor running time, total inverter running time, and total power use	
I/O check	Displays control circuit terminal output status	
Energy saving monitor	Power consumption, power consumption x coefficient	
Trip mode	Displays cause of trip: $\therefore \square f \mid :$ Overcurrent during acceleration $\square f \mid 2 :$ Overcurrent during deceleration $\square f \mid 3 :$ Overcurrent at constant speed $\therefore \square f \mid :$ Input phase loss $\square U \mid :$ Undervoltage $\square P \mid 2 :$ Output phase loss $\square U \mid :$ Overvoltage during acceleration $\square U \mid 2 :$ Overvoltage during deceleration $\square U \mid 3 :$ Overvoltage during constant speed $\square U \mid :$ Overheating of the heat sink $\square H \mid 2 :$ External thermal relay tripped $\square H \mid 3 :$ Overload in motor 1 $\square L \mid 2 :$ Overload in motor 2 $\square L \mid 1 :$ Inverter unit overload $\square f \mid 1 :$ Overload in motor 1 $\square L \mid 2 :$ Overload in motor 2 $\square L \mid 1 :$ Inverter unit overload $\square f \mid 1 :$ Overload in motor 1 $\square L \mid 2 :$ Overload in motor 2 $\square L \mid 1 :$ Inverter unit overload $\square f \mid 1 :$ Overload in motor 1 $\square L \mid 2 :$ Overload in motor 2 $\square L \mid 1 :$ Inverter unit overload $\square f \mid 1 :$ Overload in motor 1 $\square L \mid 2 :$ Overload in motor 2 $\square L \mid 1 :$ Inverter unit overload $\square f \mid 2 :$ $\square D in D i$	
Running or Trip mode	Trip history: Saves and displays the last 4 trip codes and their detailed description Saves and displays detailed data for each section on up to four past trips	

*1 Only valid when induction motor drive is in operation

*2 These functions can be supported by the inverters having a ROM version 0500 or later

Common Specifications

	Item		Explanation	Remarks				
	Overcurrent	Stops the inverter t	o protect against overcurrent due to overload	LED display				
	Short-circuit	Stops the inverter t	o protect against overcurrent due to a short circuit in the output circuit	OC1 OC2				
	Ground fault	Stops the inverter t	o protect against overcurrent due to a ground fault (initial ground circuit only) in the output circuit	OC3				
	Overvoltage		tage in DC link circuit (200V: DC 400V,400V: DC 800V) and stops the inverter inst significantly large voltage input mistakenly applied	OU1 OU2 OU3				
	Undervoltage		C link circuit voltage (200V: DC 200V,400V: DC400V) and stops the inverter will sound if auto-restart after momentary power failure is selected	LU				
	Input phase loss	Stops or protects the inverter against input phase loss Even when there is input phase loss, the loss may not be detected if the connected load is light or a DC reactor is connected to the inverte						
ŀ	Output phase loss detected	Detects loss from b	reaks in output wiring while running or during startup and stops the inverter	OPL				
		Stops the inverter by d	letecting the temperature of the inverter cooling system (e.g. when the cooling fan is malfunctioning or there is an overload)	OH1				
	Overheating		erheating during braking resistance based on braking resistor electronic thermal function settings	dbH				
	Overload		ased on the temperature of the cooling system and the switching element calculated from output current flow	OLU				
	External alarm input		larm through digital input (THR)	OH2				
	Electronic thermal	Stops running the inverter to protect the motor according to electronic thermal function settings Protects the standard motor and inverter motor over the full frequency range. The second motor can also be protected. (Operation level and thermal time constant can be set between 0.5 and 75.0 minutes)						
	D PTC thermistor	• Stops running the inverter to protect the motor when the PTC thermistor detects motor temperature A PTC thermistor is connected between terminals C1 and 11, and a resistor is connected between terminals 13 and C1. Set function code.						
	Overload early warning	Outputs a prelimina	Outputs a preliminary alarm at a preset level before the electronic thermal stops the inverter					
Ctio	Memory error	Checks data when	the power is turned on and data is being written, and stops the inverter if a memory malfunction is detected.	Er1				
Protection	Keypad communication error		a communication malfunction is detected between the keypad and inverter unit while an operation ress from the remote keypad	Er2				
	CPU error	Stops the inverter if	a CPU malfunction caused by noise or similar factors is detected	Er3				
		stop key priority	Pressing the some key on the keypad forces the inverter to stop, even if run commands are being delivered via terminals or communications. Er6 is displayed once stop is complete.					
	Operation error	Start check	Start check Prohibits run operations and displays Er6 if a run command is given while any of the following status changes are occurring: Start check • Powering up • Canceling an alarm • Switching run command methods via link operation					
	Tuning error (*1)	Stops the inverter v	when there is a tuning failure, interruption, or abnormality in tuning results during motor constant tuning	Er7				
	RS-485 communication error	Stops the inverter if	a communications malfunction is detected in RS-485 communication with the inverter unit	Er8				
	Data save error during undervoltage	Displays an error if	data save cannot proceed normally because an undervoltage protection function is activated	ErF				
	Step out detected (*2)		vhen a synchronous motor step out is detected	Erd				
	PID feedback break detected		nen a break is detected during current input (C1 terminal) distribution to PID feedback (can be enabled/disabled)	CoF				
	Stall prevention		uced to avoid an overcurrent trip when output current exceeds the limit during acceleration/deceleration or constant speed operation					
	Alarm output (for any fault)	· Outputs a relay sig	gnal when the inverter is stopped due to an alarm can be canceled by pressing the PRG/RESET key or by inputting a digital signal (RST)					
	Retry	Inverter can be auton	natically reset and restarted after stopping due to a trip (the number of retries and wait time until reset can also be set)					
	Incoming surge		r from surge voltage between the main circuit and ground terminal					
	Momentary power failure		ctive function (stops the inverter) when there is a momentary power failure of 15ms or more bres voltage within the set time when momentary power failure restart is selected					
F	Mock malfunction	Can output a mock	alarm to check malfunction sequences	Err				
	Installation location	Must be indoors a Keep out of direct	nd free of corrosive gases, flammable gases, dust, and oil mist (contamination level 2 (IEC 60664-1: 2007) sunlight					
ŀ	Ambient temperature	•) to + 50°C (122°F) (IP20)					
ŧ	Ambient humidity	5 to 95%RH (no co						
onme	Altitude	1000m (3300ft) or l Above 1000m (330 Above 1000m (330	ess (Output derating is not necessary.) Off) to 3000m (9800ft) or less (Output derating is necessary.) Off) to 1500m (4900ft) or lower : 0.97, Above 1500m (4900ft) to 2000m (6600ft) or lower : 0.95, Off) to 2500m (8200ft) or lower : 0.91, Above 2500m (8200ft) to 3000m (9800ft) lower : 0.88					
	Vibration	3mm (0.12inch) (vibra	ation width): 2 to less than 9Hz, 9.8m/s ² : 9 to less than 20Hz, 2m/s ² : 20 to less than 55Hz, 1m/s ² : 55 to less than 200Hz					
	Saved temperature	-25°C (77°F) ± 70°C	C (158°F)					
	Saved humidity	5 to 95%RH (no co	ndensation)					

*1 Only valid when induction motor drive is in operation

*2 These functions can be supported by the inverters having a ROM version 0500 or later

11 Dealers Industrial Equipment -- Visit <u>https://DealersElectric.com</u> or call (908) 688-1966 for all of your electric motor & VFD needs

Terminal Functions

Terminal Functions

Ier	minal Functio	ns		
Category	Symbol	Terminal Name	Functions	Remarks
	L1/R,L2/S,L3/T	Power input	Connect a three-phase power supply (three-phase 200V,400V)	
	U,V,W	Inverter output	Connect a three-phase induction motor	
cuit	P(+) ,P1	For DC REACTOR	Connect the DC REACTOR	
Main circuit	P(+) ,N(-)	For DC bus connection	Used for DC bus connection system	
Mai	P(+) ,DB	For EXTERNAL BRAKING RESISTOR	Connect external braking resistor	Only for 0.4kW and above. Connections are enabled for 0.2kW and below, but operation will not work.
	G(2-terminal)	Grounding	Ground terminal for inverter chassis	
	13	Potentiometer power supply	Power supply for frequency setting potentiometer (1 to $5k\Omega$)	DC10V
		Voltage input	 Used as voltage input for frequency setting 0 to +10V DC/0 to 100% 	
setting	12	(Inverse operation) (PID control) (Frequency aux. setting)	 +10 to +0V DC/0 to 100% Used for reference signal (PID process command) or feedback signal Used as additional auxiliary setting to various main settings of frequency 	
Frequency setting		Current input	Used as current input for frequency setting +4 to +20mADC (0 to +20mADC)/0 to 100%	
Fre	C1	(Inverse operation) (PID control) (Frequency aux. setting)	 +4 to +20mA DC (0 to +20mA DC)/0 to 100% Used for reference signal (PID process command) or feedback signal Used as additional auxiliary setting to various main settings of frequency 	
		(For PTC thermistor)	· Connects PTC thermistor for motor protection	
	11(2-terminal)	Common	Common terminal for frequency setting signal (12, 13, C1, FMA)	Isolated from terminal CM and Y1E
	X1	Digital input 1	The following functions can be set at terminals X1 to X3, FWD,	
	X2 Digital input 2		and REV for signal input.	
	Х3	Digital input 3	 Common function Switch between synch/source using the built-in switches on the unit 	
	FWD	Forward operation command	Short-circuit ON or open circuit ON settings are enabled between the terminal X1 and CM	
	REV	Reverse operation command	The same setting is possible between CM and any of the terminals among X2, X3, FWD, and REV.	
	(FWD)	Forward operation command	The motor runs in the forward direction when (FWD) is ON, stops after deceleration when FWD is OFF	Only terminal FWD/REV settings are allowed, only short circuit ON
	(REV)	Reverse operation command	The motor runs in the reverse direction when (REV) is ON, stops after deceleration when REV is OFF	do.
Digital input	(SS1) (SS2) (SS4) (SS8)	Multistep freq. selection	16-speed operation is enabled using the ON/OFF signal from (SS1) through (SS8) Frequency Digital input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 OIgital input 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 (SS1) - ON ON <t< td=""><td></td></t<>	
Digita	(RT1)	ACC/DEC selection	Acceleration/deceleration time setting 1 is active when RT1 is OFF Acceleration/deceleration time setting 2 is active when RT1 is ON	
	(HLD)	3-wire operation stop command	 Used as an automatic hold signal during 3-wire operation The FWD or REV signal is automatically stopped when HLD is ON, and the hold is removed when HLD is OFF 	
	(BX) Coast-to-stop command		When BX is ON, inverter output is shut off immediately and the motor coasts-to-stop (no alarm output)	
	(RST)	Alarm reset	Alarm hold status is removed when RST is ON	Signal at 0.1s or higher
	(THR)	Trip command (External fault)	When THR is OFF, inverter output is shut off immediately and the motor coasts-to-stop (alarm output enabled: OH2)	
	(JOG)	Jogging operation	Turn JOG ON to enable jogging operation: switches the running mode to jogging mode, the frequency setting to jogging frequency, and acceleration/deceleration time to jogging running use	(*1)
	(Hz2/Hz1)	Freq. set 2/ Freq. set 1	Frequency setting 2 is selected when Hz2/Hz1 is ON	
	(M2/M1)	Motor 2/Motor 1	Motor 1 settings take effect when M2/M1 is OFF. Motor 2 settings take effect when M2/M1 is ON.	
*1 Only	valid when induction motor	drive is in operation		

*1 Only valid when induction motor drive is in operation

atacan	Symbol	Terminal Name	Functions	Domorke
ategory	Symbol (DCBRK)	Terminal Name DC brake command	Functions	Remarks
	(DCBRK)		Turn DCBRK ON to start direct current braking	
	(WE-KP)	Write enable for KEYPAD	Function code data changes can only be made when the keypad is turned ON with WE-KP	
	(UP)	UP command	Output frequency increases while UP is ON	
	(DOWN)	DOWN command	Output frequency decreases while DOWN is ON	
Inc	(Hz/PID)	PID control cancel	PID control is canceled when Hz/PID is ON (runs based on multistep frequency/keypad/analog input etc.)	
Digital input	(IVS)	Inverse mode changeover	Switch from analog frequency setting or PID control output signal (frequency setting) operation mode to forward/reverse operation. Reverse operation enabled when IVS is ON.	
	(LE)	Link enable (RS485, Bus)	Operates according to commands from RS-485 when LE is ON	
	(PID-RST)	PID integral/differential reset	Turn PID-RST ON to reset PID integration and differential values	
	(PID-HLD)	PID integral hold	Turn PID-HLD ON to hold PID differentiation	
	PLC	PLC terminal	Connect to PLC output signal power supply Common for 24V power	+24V (22–27V) Max 50mA
	CM(2-terminal)	Common	Common for digital input signal	Isolated from terminal 11 and Y1E
	(PLC)	Transistor output power	Power supply for transistor output load (Max: DC 24V DC 50mA) (Caution: Same terminal as digital input PLC terminal)	Short circuit between terminal CM and Y1E is used
	Y1	Transistor output	Select one of the following signals for output: Short circuit when ON signal is output or open circuit when ON signal is output	Max. voltage: 27Vdc, max. current: 50mA, leak current: 0.1mA ^{max} , ON voltage: within 2V(at 50mA)
	(RUN)	Inverter running (speed exists)	Comes ON when the output frequency is higher than starting frequency	
	(FAR)	Speed/freq. arrival	Comes ON when the difference between output frequency and set frequency rises above the frequency arrival detection range (function code E30)	
	(FDT)	Speed/freq. detection	Comes ON when output frequency falls below operational level (function code E31). Turns OFF when it falls below operational level (function code E31) or hysteresis width (function code E32).	
-	(LU)	Undervoltage detection	Comes ON when there is a run command and running has stopped due to insufficient voltage	
-	(IOL)	Inverter output limit	Comes ON when the inverter is experiencing limited current, automatic deceleration, or limited torque operation	
	(IPF)	Auto-restarting	Comes ON during auto restart operation (after momentary power failure and until completion of restart).	
output	(OL)	Overload early warning	Comes ON when the electronic thermal relay value is higher than the preset alarm level	
Iransistor ou	(SWM2)	Switch to Motor 2	Comes ON when Motor 2 is selected by inputting a motor switch signal (M2/M1)	
	(TRY)	Auto-resetting mode	Comes ON during auto reset mode	
	(LIFE)	Lifetime alarm	Alarm signal is output according to lifetime assessment standards inside the inverter	
	(PID-CTL)	PID control in progress	Comes ON when PID control is in effect	
	(PID-STP)	PID low water volume stop in progress	Comes ON when low liquid level stop is in effect in PID control (also stops based on the status of input run command)	
	(RUN2)	Inverter output in progress	Comes ON when the inverter is running above startup frequency and DC braking is also in operation (Comes ON when the inverter main circuit (gate) is ON)	
	(OLP)	Overload preventive control	Comes ON when overload prevention control is operating	
	(ID2)	Current detection 2	Comes ON when a current larger than the set value (for ID2) is continuously detected for longer than the time set on the timer	
	(THM)	Thermistor detected	Comes ON when motor overheating is detected by the PTC/NTC thermistor	(*1)
	(BRKS)	Brake signal	Outputs a brake engage/release signal	(*1)
	(MNT)	Maintenance timer	Alarm signal is generated when time passes or start-up exceeds over the preset value	(*2)
	(FARFDT)	Frequency arrival/frequency detected	Comes ON when both (FAR) and (FDT) are ON	
	(C10FF)	C1 terminal break detected	Comes ON when the system determines that a break will occur if terminal C1 input falls below 2mA	
	(ID)	Current detection	Comes ON when a current larger than the set value has been detected for the timer-set time	
	(10)			

*1 Only valid when induction motor drive is in operation

*2 These functions can be supported by the inverters having a ROM version 0500 or later

Terminal Functions

Terminal Functions

Category	Symbol	Terminal Name	Functions	Remarks
Transistor output	(IDL)	Small current detection	Comes ON when a current smaller than the set value has been detected for the timer-set time	
Isisto	(ALM)	Alarm relay (for any fault)	Alarm signal is output as the transistor output signal	
Trar	Y1E	Transistor output common	Common terminal for transistor output	Isolated from terminal 11 and CM
Relay output	30A, 30B, 30C	Alarm relay output (for any fault)	Outputs a no-voltage contact signal (1c) when the inverter stops the alarm Can select the same signal as the Y1 signal for multipurpose relay output · Can switch between alarm output through excitation operation and alarm output through non-excitation operation	Contact rating : AC250V, 0.3A, cosφ=0.3 DC48V, 0.5A
Analog output	FMA	Analog monitor	Output format: DC voltage (0–10V) Output can be performed in one of the following selected analog formats · Output frequency 1 (Before slip compensation) · Output frequency 2 (After slip compensation) · Output trequency 2 (After slip compensation) · Output trequency 2 (After slip compensation) · Output trequency 2 (After slip compensation) · Output current · Output voltage · Input power · PID feedback value · DC link circuit voltage · Analog output test · PID command · PID output	Gain setting between 0 and 300%
LINK		Built-in RJ-45 connector (RS-485 communication)	Any of the following protocols can be selected: • Dedicated keypad protocol (automatically selected) • Modbus RTU • Fuji dedicated inverter protocol • SX protocol (for PC loader)	Provides power to the keypad Includes terminator ON/OFF switch Communication data storage can be selected.(*2)

 $^{\star}2$ These functions can be supported by the inverters having a ROM version 0500 or later

Terminal Functions

Terminal Arrangement

Main circuit terminals

Fig. G

13 (0.51) 13 (0.51)

0

Power source	Nominal Applied Motor (kW(HP))	Inverter Type	Reference
	0.1 (1/8)	FRN0001C2S-2	
	0.2 (1/4)	FRN0002C2S-2	Fig. A
	0.4 (1/2)	FRN0004C2S-2	i ig. A
	0.75 (1)	FRN0006C2S-2	
Three phase	1.5 (2)	FRN0010C2S-2	
Three-phase 200V	2.2 (3)	FRN0012C2S-2	Fig. B
200 V	3.7 (5)	FRN0020C2S-2	
	5.5(7.5)	FRN0025C2S-2	- Fig. E
	7.5(10)	FRN0033C2S-2	т ig. L
	11(15)	FRN0047C2S-2	- Fig. F
	15(20)	FRN0060C2S-2	_ riy. r
	0.4 (1/2)	FRN0002C2□-4□	
	0.75 (1)	FRN0004C2□-4□	
	1.5 (2)	FRN0005C2□-4□	Fig. B
	2.2 (3)	FRN0007C2□-4□	
	3.7 (5)	FRN0011C2□-4□	
T	5.5(7.5)	FRN0013C2S-4	- Fig. E
Three-phase 400V	7.5(10)	FRN0018C2S-4	- FIY. E
400 v	11(15)	FRN0024C2S-4	- Fig. F
	15(20)	FRN0030C2S-4	- 1 ig. i
	5.5(7.5)	FRN0013C2E-4E	Fig. G
	7.5(10)	FRN0018C2E-4E	l ig. G
	11(15)	FRN0024C2E-4E	– Fig. H
	15(20)	FRN0030C2E-4E	— гіу. п
	0.1 (1/8)	FRN0001C2□-7□	
	0.2 (1/4)	FRN0002C2□-7□	Fig. C
Single-phase	0.4 (1/2)	FRN0004C2□-7□	Fig. C
200V	0.75 (1)	FRN0006C2□-7□	
	1.5 (2)	FRN0010C20-70	
	2.2 (3)	FRN0012C2□-7□	Fig. D
	0.1 (1/8)	FRN0001C2S-6U	
Single-phase	0.2 (1/4)	FRN0002C2S-6U	Lia O
100V	0.4 (1/2)	FRN0003C2S-6U	- Fig. C
	0.75 (1)	FRN0005C2S-6U	

(Note 1)

0 • 0 0 **O** W

P(+)

12.8

GG

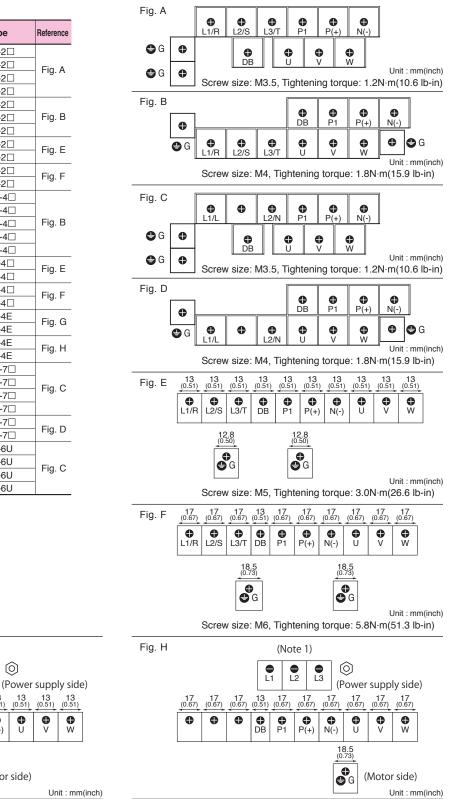
• L1 e L2 e L3

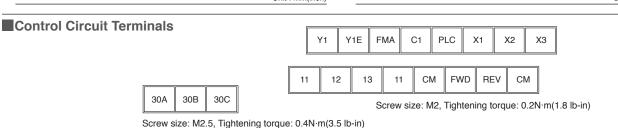
DB **₽**1

13 (0.51) 13 (0.51) 13 (0.51) 13 (0.51) 13 (0.51) 13 (0.51)

0

0

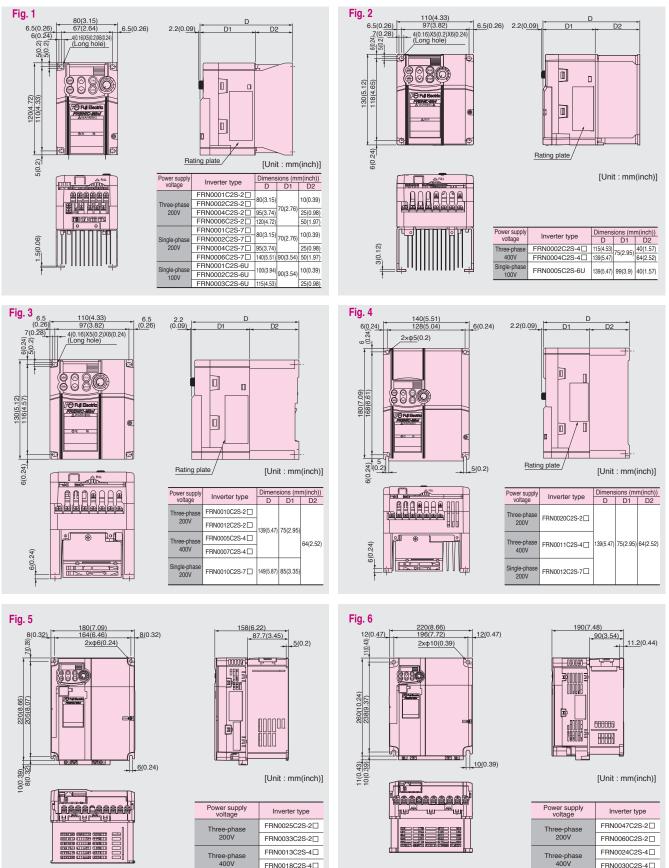

 \bigcirc


Ũ N(-)

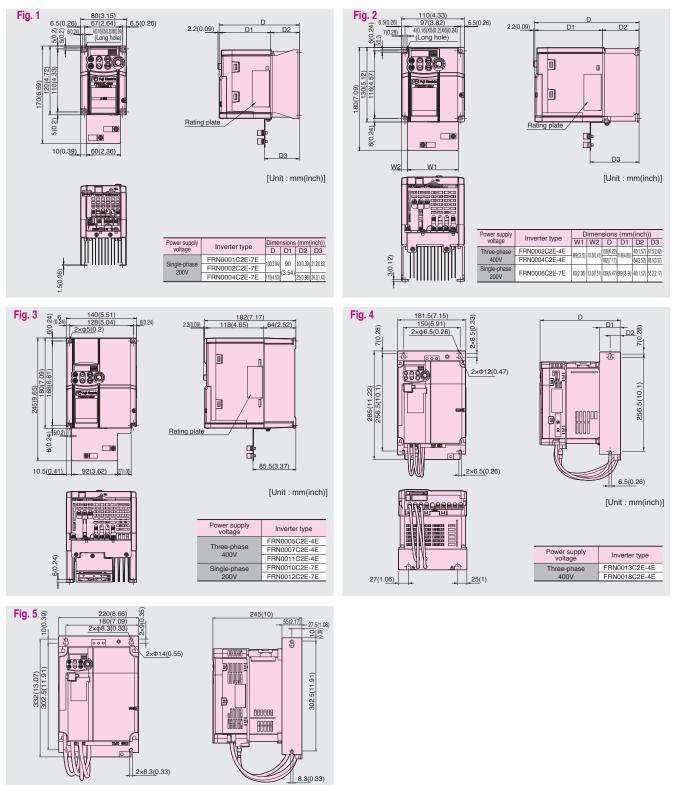
(Motor side)

13 13 (0.51) (0.51)

Ŵ



15 Dealers Industrial Equipment -- Visit https://DealersElectric.com or call (908) 688-1966 for all of your electric motor & VFD needs


External Dimensions

FRN0030C2S-4

FRN0018C2S-4

EMC Filter Built-in Model

U

ብ

32(1)

<u>alaaaab</u>

30(1.18)

17 Dealers Industrial Equipment -- Visit <u>https://DealersElectric.com</u> or call (908) 688-1966 for all of your electric motor & VFD needs

[Unit : mm(inch)]

Inverter type

FRN0024C2E-4E

FRN0030C2E-4E

Power supply voltage

Three-phase 400V

External Dimensions

Options

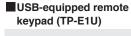
				ecm	cations	and	dimens	sions					[Uni	it:mm]		
or Fig.A	<u>w</u> Fi	ig.B <mark> ≪ ₩1 → </mark> F	ig.C					pe	Fig.			ons [mn		Mass		
ndard] □□-2)						D	200V B0.75-2	400V DB0.75-4	A	W 68	H 310	H1 295	D 67	[kg] 1.3		
(D	B2.2-2	-	A	80	345	332	94	2.0		
vpel	도ェ	도고		도ェ			-	DB2.2-4	A	68	470	455	67	2.0		
C)	W			Ш		D	B3.7-2	-	A	80	345	332	94	2.0		
j l							- B5.5-2	DB3.7-4	AB	68 146	470	455	67	1.7		
-	7	+ 7		+ 7	Stan		50.0	- DB5.5-4	B	146	450 470	430 455	67.5 67	4.5		
Ĺ	<u>₩₩Ļ ≌</u> ∓				type	D	- B7.5-2	-	B	140	390	370	90	5.0		
Ľ	₩°. I			9:	2	E	-	DB7.5-4	В	146	510	495	67	5.0		
Fig.D		1		→		D	B11-2	-	С	142	430	415	160	6.9		
Fig.D	v. Fi	g.E	ig.F	R3.5			-	DB11-4	С	142	430	415	160	6.9		
· · · j · ·			.g		5	D	B15-2	-	C	142	430	415	160	6.9		
							- B0.75-2C	DB15-4 DB0.75-4C	C D	142 43	430 221	415 215	160 30.5	6.9 0.4		
	도 포	도 도					B2.2-2C	DB2.2-4C	E	67	188	172	55	0.8		
			Ξ	т			B3.7-2C	DB3.7-4C	E	67	328	312	55	1.4		
_					10% type		B5.5-2C	DB5.5-4C	E	80	378	362	78	-		
<u> </u>	+	<u>ਸ਼ਸ਼ਸ਼</u> ⊥⊥ ∠_ -			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	D	B7.5-2C	DB7.5-4C	E	80	418	402	78	-		
٦							B11-2C	DB11-4C	F	80	460	440	140			
	1.2		'_ <u></u> #∠ _ ₩	Т		ש	B15-2C	DB15-4C	F	80	580	560	140	-		
Туре	Power	Inverter type		Q'ty	Resistance	Мах	c. braking 50 [Hz]	torque [%]		uous b				braking ess cycle		
Type	voltage	inverter type	Туре	Grty	[Ω]		[N·m]	[N·m]								
		FRN0004C2S-2					4.02	3.32	[kWs		[s]	[kW]	-	[%ED] 22		
		FRN0006C2S-2	DB0.75-2	1	100		7.57	6.25	17	-	45	0.06		18		
		FRN0010C2S-2	DB2.2-2	1	40		15.0	12.4	34			0.07	5	10		
	Three-	FRN0012C2S-2				450	22.0	18.2	33		30	0.07		7		
	phase 200 V	FRN0020C2S-2	DB3.7-2 DB5.5-2	1	33 20	150	37.1	30.5 45.4	37 55	_	20	0.09				
		FRN0033C2S-2	DB3.5-2 DB7.5-2	1	15		75.1	61.9	37			0.18		5		
		FRN0047C2S-2	DB11-2	1	10		110.2	90.8	55		10	0.27]		
		FRN0060C2S-2	DB15-2	1	8.6		150.3	123.8	75			0.37				
		FRN0002C2 -4 FRN0004C2 -4	DB0.75-4	1	200		4.02	3.32 6.25	9 17	_	45	0.04		22 18		
Standard	1	FRN0004C2 -4					15.0	12.4	34	_	45	0.06		10		
Туре	Three- phase 400 V	FRN0007C2 -4	DB2.2-4	1	160		22.0	18.2	33		30	0.07		7		
		400 V	400 V	FRN0011C2 -4	-	1	130	150	37.1	30.5	37	_	20	0.09	3	
				FRN0013C2 -4 FRN0018C2 -4	DB5.5-4	1	80		55.1	45.4	55					
				I –		FRN0018C2 -4	DB7.5-4				75.4					0.13
		FBN0024C2 -4	DB11-4	1	60 40		75.1	61.9	38	_	10	0.13 0.18	8	5		
		FRN0024C2 -4 FRN0030C2 -4	DB11-4 DB15-4	1	60 40 34.4		75.1 110.2 150.3				10	0.13	8 5	5		
	Single	FRN0030C2 -4 FRN0004C2 -7	DB15-4	1	40 34.4		110.2 150.3 4.02	61.9 90.8	38 55		10	0.13 0.18 0.27	8 5 5	5		
	Single- phase	FRN0030C2 -4 FRN0004C2 -7 FRN0006C2 -7	-	1	40	150	110.2 150.3 4.02 7.57	61.9 90.8 123.8 3.32 6.25	38 55 75 9 17		10	0.13 0.18 0.27 0.37 0.04 0.06	8 5 5 4 8	22 18		
		FRN0030C2 -4 FRN0004C2 -7 FRN0006C2 -7 FRN0006C2 -7 FRN0010C2 -7	DB15-4	1	40 34.4	150	110.2 150.3 4.02 7.57 15.0	61.9 90.8 123.8 3.32 6.25 12.4	38 55 75 9 17 34		45	0.13 0.18 0.27 0.37 0.04 0.06	8 5 5 4 8 5	22 18 10		
	phase 200 V	FRN0030C2 -4 FRN0004C2 -7 FRN0006C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0012C2 -7	DB15-4 - DB0.75-2 - DB2.2-2	1 1 1	40 34.4 100 40		110.2 150.3 4.02 7.57	61.9 90.8 123.8 3.32 6.25	38 55 75 9 17		45 30	0.13 0.18 0.27 0.37 0.04 0.06	8 5 5 4 8 5 7	22 18		
	phase	FRN0030C2 -4 FRN0004C2 -7 FRN0006C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0005C2S-6U	DB15-4 - DB0.75-2	1	40 34.4 100	150 150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25	38 55 75 9 17 34 33		45	0.13 0.18 0.27 0.37 0.04 0.06 0.07	8 5 4 8 5 7 4 4	22 18 10 7 22 18		
	phase 200 V Single-phase	FRN0030C2 -4 FRN0004C2 -7 FRN0006C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0013C2S-6U FRN0003C2S-6U FRN0005C2S-6U	DB15-4 - DB0.75-2 - DB2.2-2	1 1 1	40 34.4 100 40		110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 4.02	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 3.32	38 55 75 9 17 34 33 9		45 30 45 250	0.13 0.18 0.27 0.37 0.04 0.06 0.07 0.07 0.07	8 5 5 4 8 5 7 4 8 8	22 18 10 7 22 18 37		
	phase 200 V Single-phase	FRN0030C2 -4 FRN0004C2 -7 FRN0006C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN003C2S-6U FRN0005C2S-6U FRN0005C2S-2 FRN0006C2S-2	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C	1 1 1 1	40 34.4 100 40 100		110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 4.02 7.57	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25	38 55 75 9 17 34 33 9 17		45 30 45 250 133	0.13 0.27 0.37 0.04 0.06 0.07 0.07 0.07	8 5 5 4 8 5 7 4 8 8	22 18 10 7 22 18 37 20		
	phase 200 V Single-phase	FRN0030C2 -4 FRN0004C2 -7 FRN0006C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0013C2S-6U FRN0003C2S-6U FRN0005C2S-6U	DB15-4 - DB0.75-2 - DB2.2-2 - DB0.75-2	1 1 1 1	40 34.4 100 40 100		110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 4.02	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 3.32	38 55 75 9 17 34 33 9 17		45 30 45 250	0.13 0.27 0.37 0.04 0.06 0.07 0.07 0.07	8 5 5 4 8 5 7 4 8 8 5 5	22 18 10 7 22 18 37		
	phase 200 V Single-phase	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0005C2S-6U FRN0004C2S-2 FRN0006C2S-2 FRN0010C2S-2	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C	1 1 1 1 1	40 34.4 100 40 100 100		110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 4.02 7.57 15.0	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25	38 55 75 9 17 34 33 9 17 50		45 30 45 250 133 73	0.13 0.27 0.37 0.04 0.06 0.07 0.07 0.07 0.04 0.06	8 5 5 4 8 5 7 4 8 8 5 5 - 0 -	22 18 10 7 22 18 37 20		
	phase 200 V Single-phase 100 V Three-	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0003C2S-6U FRN0006C2S-2 FRN0006C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN002C2S-2	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C DB2.2-2C DB3.7-2C DB5.5-2C	1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 100 40 33 20	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 55.1	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4	38 55 75 9 17 34 33 9 17 50 - 55 55 140 55		45 30 45 250 133 73 50	0.13 0.18 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07	8 5 5 4 8 5 7 4 8 7 4 8 8 5 5 5 5 5 5	22 18 10 7 22 18 37 20		
	phase 200 V Single-phase	FRN0030C2 -4 FRN0004C2 -7 FRN0016C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0003C2S-6U FRN0004C2S-2 FRN0016C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN0025C2S-2 FRN0023C2S-2 FRN0033C2S-2	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C DB2.2-2C DB3.7-2C DB3.7-2C DB5.5-2C DB7.5-2C	1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 100 40 33 20 15	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 55.1 75.1	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9	38 55 75 9 17 34 33 9 17 50 - 55 55 140 55 37		45 30 45 250 133 73 50 75 20	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.11 0.18 0.27 0.37	8 5 5 4 8 5 7 4 8 7 4 8 8 5 5 5 5 5 5 5	22 18 10 7 22 18 37 20 14		
	phase 200 V Single-phase	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0005C2S-6U FRN0006C2S-2 FRN0010C2S-2 FRN0010C2S-2 FRN0010C2S-2 FRN0020C2S-2 FRN002C2S-2 FRN0025C2S-2 FRN0033C2S-2 FRN0047C2S-2 FRN0047C2S-2	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C DB2.2-2C DB3.7-2C DB3.7-2C DB5.5-2C DB7.5-2C DB11-2C	1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 33 20 15 10	150	110.2 150.3 4.02 7.57 15.0 22.0 37.1 55.1 75.1	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8	38 55 75 9 17 34 33 9 17 50 - 55 55 140 55 37 55		45 30 45 250 133 73 50 75	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.04 0.06 0.07 0.05 0.5 0.5 0.5 0.5 0.5 0.5 0.	8 5 5 4 8 5 7 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 18 10 7 22 18 37 20 14		
	phase 200 V Single-phase	FRN0030C2 -4 FRN0004C2 -7 FRN0016C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0003C2S-6U FRN0004C2S-2 FRN0016C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN0025C2S-2 FRN0023C2S-2 FRN0033C2S-2	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2C DB2.2-2C DB3.7-2C DB5.5-2C DB1.2C DB1-2C	1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 40 33 20 15 10 8.6	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 55.1 75.1	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9	38 55 75 9 17 34 33 9 17 50 - 55 55 140 55 37 55 75		45 30 45 250 133 73 50 75 20	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.07 0.07 0.04 0.06 0.07	8 5 5 4 8 5 7 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 18 10 7 22 18 37 20 14		
109/ 55	phase 200 V Single-phase	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0005C2S-6U FRN0010C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN002C2S-2 FRN003C2S-2 FRN0047C2S-2 FRN0047C2S-2 FRN0002C2 -4 FRN0002C2 -4	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C DB2.2-2C DB3.7-2C DB3.7-2C DB5.5-2C DB7.5-2C DB11-2C	1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 33 20 15 10	150	110.2 150.3 4.02 7.57 15.0 22.0 37.1 55.1 110.2 150.3	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8	38 55 75 9 17 34 33 9 17 50 - 55 55 140 55 37 55		45 30 45 250 133 73 50 75 20 10	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.04 0.06 0.07 0.05 0.5 0.5 0.5 0.5 0.5 0.5 0.	8 5 5 4 8 5 7 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 18 10 7 22 18 37 20 14		
10%ED Type	phase 200 V Single-phase	FRN0030C2 -4 FRN0004C2 -7 FRN0016C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0003C2S-6U FRN0006C2S-2 FRN0016C2S-2 FRN0016C2S-2 FRN0012C2S-2 FRN002C2S-2 FRN003C2S-2 FRN004C2S-2 FRN0060C2S-2 FRN0004C2 -4 FRN0004C2 -4	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C DB3.7-2C DB3.7-2C DB3.7-2C DB3.7-2C DB3.5-2C DB1-2C DB15-2C DB0.75-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 33 20 15 10 8.6 200	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 55.1 75.1 110.2 150.3 4.02 7.57 15.0	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32 6.25 12.4	38 55 75 9 17 34 33 9 17 50 - 50 - 55 140 55 37 55 75 - 50		45 30 45 250 133 73 50 75 20 10 250 133 73	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.07 0.07 0.04 0.06 0.07	8 5 5 5 7 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 18 10 7 22 18 37 20 14 10 37		
	phase 200 V Single-phase 100 V Three- phase 200 V	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0006C2S-2 FRN0010C2S-2 FRN0012C2S-2 FRN002C2S-2 FRN003C2S-2 FRN003C2S-2 FRN0007C2 FRN0004C2S-2 FRN0004C2S-2 FRN0004C2S-4 FRN0004C2 FRN0004C2 -4 FRN0005C2 -4 FRN0007C2 -4	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C DB2.2-2C DB3.7-2C DB5.5-2C DB11-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB2.2-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 33 20 15 10 8.6 200 160	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 12.3.8 3.32 6.25 12.4 18.2	38 55 75 9 17 34 33 9 17 50 55 55 140 55 37 55 75 50 50 55		45 30 45 250 133 73 50 75 20 10 250 133 73 50 50	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07	8 5 5 5 5 7 4 8 5 7 4 8 5 5 5 5 5 5 5 5 5 5 6 0	22 18 10 7 22 18 37 20 14 10 37 20		
	phase 200 V Single-phase 100 V Three- phase 200 V	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0004C2S-2 -2 FRN0012C2S-2 -2 FRN002C2S-2 -2 FRN002C2S-2 -2 FRN002C2S-2 -2 FRN0047C2S-2 -2 FRN0005C2 -4 FRN0005C2 -4 FRN0005C2 -4 FRN0005C2 -4 FRN0005C2 -4 FRN0011C2 -4	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C DB3.7-2C DB5.5-2C DB1-2C DB1-2C DB1-2C DB1-2C DB0.75-4C DB3.7-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 33 20 15 10 8.6 200 160 130	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 10.2 150.3 4.02 7.57 15.0 22.0 37.1	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32 6.25 12.4 18.2 30.5	38 55 75 9 177 34 33 9 17 50 - 55 140 55 377 55 75 - 50 - 55 140		45 30 45 250 133 73 50 75 20 10 250 133 73 50 75 50 75	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.11 0.18 0.27 0.55 0.75 0.75 0.07 0.11 0.11 0.18	8 5 5 5 7 4 8 5 6 5 5 6 5 6 5 6 7 7 <t< td=""><td>22 18 10 7 22 18 37 20 14 10 37 20 14 14</td></t<>	22 18 10 7 22 18 37 20 14 10 37 20 14 14		
	phase 200 V Single-phase 100 V Three- phase 200 V	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0003C2S-6U FRN0006C2S-2 FRN0010C2S-2 FRN0012C2S-2 FRN002C2S-2 FRN003C2S-2 FRN003C2S-2 FRN0007C2 FRN0004C2S-2 FRN0004C2S-2 FRN0004C2S-4 -7 FRN0004C2S-4 -7 FRN0004C2S-4 -4 FRN0005C2 -4 FRN0007C2 -4	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2 DB0.75-2C DB2.2-2C DB3.7-2C DB5.5-2C DB11-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB2.2-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 33 20 15 10 8.6 200 160	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32 6.25 12.4 18.2 30.5 12.4 18.2 30.5 45.4	38 55 75 9 177 34 33 9 177 50 55 140 55 755 755 75 50 55 140 55		45 30 45 250 133 73 50 75 20 10 250 133 73 50 50	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.11 0.18 0.27 0.55 0.75 0.07 0.11 0.18 0.27 0.07 0.11 0.18 0.27 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.07 0.04 0.06 0.07	8 5 5 5 7 4 8 5 7 4 8 5	22 18 10 7 22 18 37 20 14 10 37 20		
	phase 200 V Single-phase 100 V Three- phase 200 V	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0010C2 -7 FRN0012C3 -7 FRN0003C2S-6U FRN0005C2S-6U FRN0006C2S-2 FRN0010C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN002C2S-2 FRN002C2S-2 FRN003C2S-2 FRN0047C2S-2 FRN0060C2S-2 FRN0005C2 -4 FRN0005C2 -4 FRN0007C2 -4 FRN0007C2 -4 FRN0011C2 -4	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2C DB2.2-2C DB3.7-2C DB5.5-2C DB1-2C DB1-2C DB1-2C DB0.75-4C DB3.7-4C DB3.7-4C DB3.7-4C DB3.7-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 33 20 15 10 8.6 200 160 130 80	150	110.2 150.3 4.02 7.57 50.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 55.1 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 22.0 37.1 55.1	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32 6.25 12.4 18.2 30.5	38 55 75 9 177 34 33 9 17 50 - 55 140 55 377 55 75 - 50 - 55 140		45 30 45 250 133 73 50 75 20 10 250 133 73 50 75 50 75	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.11 0.18 0.27 0.55 0.75 0.75 0.07 0.11 0.11 0.18	8 5 5 5 4 8 5 7 4 8 5 7 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 18 10 7 22 18 37 20 14 10 37 20 14 14		
	phase 200 V Single-phase 100 V Three- phase 200 V	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0010C2S-2 -7 FRN0010C2S-2 -7 FRN002C2S-2 -7 FRN003C2S-2 -7 FRN003C2S-2 -7 FRN0047C2S-2 -7 FRN0047C2S-2 -7 FRN0004C2 -4 FRN0005C2 -4 FRN0005C2 -4 FRN0011C2 -4 FRN0018C2 -4 FRN0018C2 -4 FRN0018C2 -4 FRN003C2 -4 FRN0018C2 -4 FRN003C2 -4	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2C DB2.2-2C DB3.7-2C DB3.7-2C DB15-2C DB15-2C DB15-2C DB15-2C DB3.5-2C DB15-2C DB3.5-2C DB3.5-2C DB3.5-4C DB2.2-4C DB3.7-4C DB3.7-4C DB3.7-4C DB3.7-4C DB3.7-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 40 33 20 15 10 8.6 200 160 130 80 60	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 55.1 75.7 15.0 22.0 37.1 55.1 75.0 22.0 37.1 55.1 75.1 110.2 150.3 4.02 7.57 15.0 22.0 37.1 55.1 75.1 110.2 150.3 4.02 7.57 15.0 22.0 37.1 55.1 75.1 110.2 150.3	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 12.4 18.2 30.5 45.4 6.25 12.4 18.2 30.5 45.4 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8	38 55 75 9 177 34 33 9 177 50 55 140 55 75 55 75 50 55 75 50 140 55 38		45 30 45 250 133 50 75 20 10 250 133 73 50 75 20 10 250 133 73 50 75 20 10	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.11 0.18 0.27 0.37 0.11 0.18 0.27 0.37 0.07 0.11 0.18 0.27 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.04 0.06 0.07 0.01 0.07 0.01 0.07 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.07 0.01 0.07 0.07 0.07 0.01 0.07	8 5 5 5 7 4 8 5 7 4 8 5 <t< td=""><td>22 18 10 7 22 18 37 20 14 10 37 20 14 10 10</td></t<>	22 18 10 7 22 18 37 20 14 10 37 20 14 10 10		
	phase 200 V Single-phase 100 V Three- phase 200 V Three- phase 400 V	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0012C2 -2 FRN0012C2S-2 -2 FRN002C2S-2 -2 FRN003C2S-2 -2 FRN003C2S-2 -2 FRN004C2S-2 -2 FRN005C2S-2 -2 FRN0004C2S-2 -2 FRN0004C2S-2 -4 FRN0004C2 -4 FRN0005C2 -4 FRN0011C2 -4 FRN0013C2 -4 FRN0013C2 -4 FRN0013C2 -4 FRN0013C2 -4 FRN0013C2 -4 FRN0013C2 -4 FRN003C2 -4 FRN003C2 -7	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2C DB2.7-2C DB3.7-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB3.7-4C DB2.2-4C DB3.7-4C DB3.7-4C DB3.7-4C DB7.5-4C DB1-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 40 33 20 15 10 8.6 200 160 130 80 60 40	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 55.1 75.7 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 15.0 22.0 37.1 55.1 75.51 110.2 150.3 4.02 7.57 15.0 22.0 37.1 55.1 75.51 110.2 150.3 4.02	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 30.5 45.4 6.25 12.4 18.2 30.5 45.4 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32	38 55 75 9 177 34 33 9 17 50 55 140 55 37 55 75 50 55 55 55 55 38 55		45 30 45 250 133 50 75 20 10 250 133 73 50 75 20 10 250 10 250	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.11 0.18 0.27 0.37 0.55 0.75 0.07 0.11 0.18 0.27 0.37 0.55 0.75 0.75	8 5 5 5 5 7 4 8 5 7 4 8 5 7 6 7 7 4 8 7 6 7 7 1 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 18 10 7 22 18 37 20 14 10 37 20 14 10 37 20 14 37 37 20 37		
	phase 200 V Single-phase 100 V Three- phase 200 V Three- phase 400 V Single- phase	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN0012C2 -7 FRN005C2S-6U FRN0004C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN002C2S-2 FRN0025C2S-2 FRN0005C2 -4 FRN0005C2 -4 FRN0005C2 -4 FRN0005C2 -4 FRN0011C2 -4 FRN0011C2 -4 FRN0011C2 -4 FRN0013C2 -4 FRN0013C2 -4 FRN003C2 -7 FRN0006C2 -7 FRN0006C2 -7	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2C DB0.75-2C DB3.7-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB3.7-4C DB2.2-4C DB3.7-4C DB3.7-4C DB3.7-4C DB3.7-4C DB3.7-4C DB15-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 33 20 15 10 33 20 15 10 8.6 200 160 130 80 60 40 34.4	150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 55.1 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 30.5 45.4 61.9 90.8 12.4 18.2 30.5 12.4 18.2 30.5 45.4 61.9 90.8 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32 6.25	38 55 75 9 177 34 33 9 177 50 55 75 55 75 50 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 38 55 75		45 30 45 250 133 73 50 75 20 10 250 133 73 50 75 20 10 250 10 250 10 250 10 250 133 33 50 20 133 20 10 133 20 10 133 20 10 133 20 10 133 20 10 133 20 10 10 133 20 10 10 133 20 10 10 133 20 10 10 10 10 10 10 10 10 10 1	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.11 0.18 0.27 0.37 0.55 0.07 0.07 0.11 0.18 0.27 0.37 0.55 0.07 0.37 0.55 0.27 0.37 0.55 0.27 0.37 0.55 0.27 0.37 0.55 0.27 0.37 0.55 0.27 0.37 0.55 0.27 0.37 0.55 0.27 0.37 0.55 0.27 0.37 0.55 0.07 0.07 0.55 0.07 0.07 0.07 0.07 0.55 0.07 0.07 0.07 0.55 0.07	8 5 5 5 5 7 4 8 5 7 4 8 5 7 6 7 7 4 8 7 6 7 7 1 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22 18 10 7 22 18 37 20 14 10 37 20 14 10 37 20 14 37 20 14		
	phase 200 V Single-phase 100 V Three- phase 200 V Three- phase 400 V Single-	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0010C2 -7 FRN0010C2 -7 FRN0010C2 -7 FRN0010C2 -7 FRN0005C2S-6U FRN0005C2S-6U FRN0010C2S-2 FRN0010C2S-2 FRN0010C2S-2 FRN0012C2S-2 FRN003C2S-2 FRN003C2S-2 FRN0047C2S-2 FRN0047C2S-2 FRN0006C2S-2 FRN0006C2S-2 FRN0004C2 -4 FRN0011C2 -4 FRN0004C2 -4 FRN0004C2 -4 FRN0004C2 -7 FRN0004C2 -7 FRN0004C2 -7 FRN0010C2 -7	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2C DB0.75-2C DB3.7-2C DB15-2C DB15-2C DB15-2C DB15-2C DB15-2C DB3.7-4C DB2.2-4C DB3.7-4C DB3.7-4C DB3.7-4C DB3.7-4C DB3.7-4C DB15-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 33 20 15 10 33 20 15 10 8.6 200 160 130 80 60 40 34.4	150 150 150	110.2 150.3 4.02 7.57 50.22.0 4.02 7.57 150.3 4.02 7.57 150.0 22.0 37.1 55.1 75.51 110.2 150.3 4.02 7.57 15.0 22.0 37.1 150.3 4.02 7.57 150.3 4.02 7.57 15.0	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 12.4 18.2 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32 6.25 12.4	38 55 75 9 177 34 33 9 177 50 55 75 55 75 50 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 55 75 38 55 75		45 30 45 250 133 73 50 20 10 250 133 73 55 20 10 250 10 250 10 250 10 250 133 73 20 20 20 20 20 20 20 20 20 20	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.04 0.06 0.07 0.11 0.18 0.27 0.37 0.55 0.75 0.07 0.11 0.18 0.27 0.37 0.55 0.75 0.75	8 5 5 5 5 7 4 8 5 7 4 8 5 5	22 18 10 7 22 18 37 20 14 10 37 20 14 10 37 20 14 10 37 20 14		
	phase 200 V Single-phase 100 V Three- phase 200 V Three- phase 400 V Single- phase	FRN0030C2 -4 FRN0004C2 -7 FRN0010C2 -7 FRN0010C2 -7 FRN0012C2 -7 FRN0005C2S-6U FRN0005C2S-6U FRN0006C2S-2 FRN0010C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN0012C2S-2 FRN003C2S-2 FRN003C2S-2 FRN0007C2 -4 FRN0007C2 -4 FRN0013C2 -7 FRN0006C2 -7 FRN001C2 -7	DB15-4 DB0.75-2 DB2.2-2 DB0.75-2C DB3.7-2C DB3.7-2C DB15-2C DB15-2C DB15-2C DB3.7-2C DB3.7-2C DB15-2C DB15-2C DB3.7-4C DB5.5-4C DB7.5-4C DB15-4C DB15-4C DB15-4C DB15-4C DB15-4C DB15-4C DB15-4C DB15-4C DB15-4C DB15-4C	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 34.4 100 40 100 40 40 33 20 15 10 8.6 200 160 130 80 60 40 34.4 100	150 150 150	110.2 150.3 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 4.02 7.57 15.0 22.0 37.1 55.1 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57 150.3 4.02 7.57	61.9 90.8 123.8 3.32 6.25 12.4 18.2 3.32 6.25 3.32 6.25 3.32 6.25 3.32 6.25 12.4 18.2 30.5 45.4 61.9 90.8 123.8 30.5 45.4 61.9 90.8 12.4 18.2 30.5 12.4 18.2 30.5 45.4 61.9 90.8 12.4 18.2 30.5 45.4 61.9 90.8 123.8 3.32 6.25	38 55 75 9 17 34 33 9 17 50 55 140 55 37 55 75 50 55 55 140 55 38 55 75 50		45 30 45 250 133 73 50 75 20 10 250 133 73 50 75 20 10 250 10 250 10 250 10 250 133 33 50 20 133 20 10 133 20 10 133 20 10 133 20 10 133 20 10 133 20 10 10 133 20 10 10 133 20 10 10 133 20 10 10 10 10 10 10 10 10 10 1	0.13 0.13 0.27 0.37 0.04 0.06 0.07 0.07 0.04 0.06 0.07 0.11 0.18 0.27 0.37 0.37 0.55 0.75 0.07 0.11 0.18 0.27 0.37 0.55 0.75 0.07	8 5 5 5 5 7 4 8 5 6 7 6 7 <t< td=""><td>22 18 10 7 22 18 37 20 14 10 37 20 14 10 37 20 14 37 20 14</td></t<>	22 18 10 7 22 18 37 20 14 10 37 20 14 10 37 20 14 37 20 14		

Note: 1) A box (□) in the above table replaces A, C, E, or U depending on shipping destination. 2) A box (■) in the above table replaces S (Basic type) or E (EMC filter built-in type) depending on the enclosure.

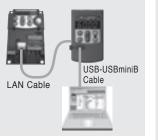
High Perfomance Compact Body Welcome to the NEXT Generation of Compact In

Name(Type)			Spe	cificati	ons and dime	ensions						[Uni	t:mm	ı]
Braking resistor [Compact type] (TK80W120Ω)		500 400 1.25-4	Power supply voltage	r	Type Capacity [kW])W120	2			
	125±1.5		Resisto	Resistance [Ω]	-				120					
	H H H H H H H H H H H H H H H H H H H	Protection		Applica	ble inverter model	FRN0004 C2 -2		0006 -2	FRI	N0010	FRN00		RN002	
	-		200V	Applicab	le motor output [kW]		0	75		1.5	2.2		3.7, 4.0	5
	t.		class		braking torque [%]			50		150	100		100	
	<u>_</u> <u>+</u> + +				Allowable duty cycle [%]	15		5		5	5		5	
					Allowable continuous braking time	15sec	15	sec		Osec	10se	с	10sec	
-				Braking	unit				Not r	equired				_
DC REACTOR			of inv	verters o	ype of braking r r to inverters of	5.5 kW (7.5		or abo	ove.		0 V cla	ss ser		
(DCR2-	╠╤╨╤╫╴╽		verter		Olarita altara 400V	Reactor type	ww		ensi D1		0		Ma	
		Three-phase 200V Sin FRN0001C2S-2	<u> </u>	2 -7 -	Single-phase 100V	DCR2-0.2		6 90	D1 72		G (5.2×8)	Η . 94 Ν	· · ·	
and the second s		FRN0002C2S-2	N0002C	2 7		DCR2-0.4	66 5	6 00	70	15 M	(5.2×8)	94 N	4 1.	
11					FRN0001C2S-6U								_	
and a second second	W1 4-G Mounting hole				FRN0002C2S-6U							94 N	_	
		FRN0012C2S-2			FRN0003C2S-6U			1 100				110 N		
	Terminal block (for screwJ)	EBN0020C2S-2	N0010C	2 2- 7	FRN0005C2S-6U			1 100			5(6×9)			
		FRN0025C2S-2	11100120			DCR2-5.5	111 9	5 100	80	20 M	6(7×11)	130 N	5 3.	6
and the second se		FRN0033C2S-2									6(7×11)			
-		FRN0047C2S-2									6(7×11)			
		FRN0060C2S-2									6(7×11)			
		Three	e-phas	e 400V										
	I IMAX.D2	FRN0002C2 -4				DCR4-0.4	66 5	6 90	72	15 M4	(5.2×8)	94 N	4 1.	0
		FRN0004C2 -4				DCR4-0.75	66 5	6 90	72	20 M4	(5.2×8)	94 N	4 1.4	4
		FRN0005C2 -4				DCR4-1.5	66 5	6 90	72	20 M4	(5.2×8)	94 N	4 1.	6
		FRN0007C2 -4						1 100				110 N		
		FRN0011C2 -4						1 100			- (/	110 N		
		FRN0013C2 -4						1 100			-()	110 N		
		FRN0018C2 -4									6(7×11)			
		FRN0024C2 -4									6(7×11)			-
		FRN0030C2 -4				DCR4-15	146 1	24 120	96	15 M	6(7×11)	168 N	5 5.	9

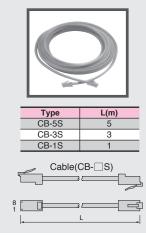
Note 1: Generated losses listed in the above table are approximate values that are calculated according to the following conditions: - The power source is 3-phase 200 V/400 V 50 Hz with 0% interphase voltage unbalance ratio. - The power source capacity uses the larger of either 500 kVA or 10 times the rated capacity of the inverter.


The power source capacity uses the larger of enter source work of 10 times the rated capacity of the inverter.
 The motor is a 4-pole standard model at full load (100%).
 An AC reactor (ACR) is not connected.
 Note 2:A box (□) in the above table replaces A, C, E, or U depending on shipping destination.
 Note 3:A box (□) in the above table replaces S (Basic type) or E (EMC filter built-in type) depending on the enclosure.

Options


Remote keypad (TP-E1)

The keypad permits remote control of FRENIC-Mini, and function setting and display (with copy function).



Using the keypad in combination with FRENIC Loader enables a variety of data about the inverter unit to be saved in the keypad memory, allowing you to check the information in any place.

This straight cable is used to connect the RS485 Communications card and the remote keypad, and available in three lengths, i.e. 1m, 3m and 5m.

Mounting adapters (MA-C1-

NEMA1 kit (NEMA1- C2-)

FRENIC-Mini series of inverters	Ontion model	Applicable inverter model					
can be installed in the control	Option model	FRENIC-Mini	FVR-E11S				
board of your system using		FRN0001C2S-2	FVR0.1E11S-2				
mounting adapters which utilize		FRN0002C2S-2	FVR0.2E11S-2				
the mounting holes used for		FRN0004C2S-2	FVR0.4E11S-2				
conventional inverters (FVR-E11S	MA-C1-0.75	FRN0006C2S-2	FVR0.75E11S-2				
series of 0.75 kW or below or 3.7	1017 01 0.75	FRN0001C2S-7	FVR0.1E11S-7				
(4.0) kW). The FVR-E11S-2/4 (1.5		FRN0002C2S-7	FVR0.2E11S-7				
		FRN0004C2S-7	FVR0.4E11S-7				
kW/2.2 kW) and FVR-E11S-7		FRN0006C2S-7					
(0.75 kW/1.5 kW) models may be		FRN0020C2S-2	FVR3.7E11S-2				
replaced with the FRENIC-Mini	MA-C1-3.7	FRN0011C2S-4	FVR3.7E11S-4				
series inverters without the use of		FRN0012C2S-7	FVR4.0E11S-4				
adapters.			FVR2.2E11S-7				

Note: A box () in the above table replaces A, C, E, or U depending on shipping destination.

Rail mounting bases (RMA-C1-

A rail mounting base allows any of the FRENIC-Mini series of inverter to be mounted on a DIN rail (35 mm (1.38 inches) wide).

Option model	Applicable inverter type
	FRN0001C2S-2
	FRN0002C2S-2
	FRN0004C2S-2
	FRN0006C2S-2
RMA-C1-0.75	FRN0001C2S-7
	FRN0002C2S-7
J.	FRN0004C2S-7
4	FRN0006C2S-7
1 2	FRN0001C2S-6U
~~~~	FRN0002C2S-6U
	FRN0003C2S-6U
	FRN0001C2E-7
	FRN0002C2E-7
	FRN0004C2E-7
	FRN0010C2S-2
	FRN0012C2S-2
RMA-C1-2.2	FRN0002C2S-4
	FRN0004C2S-4
	FRN0005C2S-4
6. °	FRN0007C2S-4
	FRN0010C2S-7
	FRN0002C2E-4
	FRN0004C2E-4
	FRN0006C2E-7
BMA-C1-3 7	FRN0020C2S-2
TIMA-01-0.7	FRN0011C2S-4
	FRN0012C2S-7
	FRN0005C2E-4
	FRN0007C2E-4
	FRN0011C2E-4
	FRN0010C2E-7
	FRN0012C2E-7

Note 1: A box ( ) in the above table replaces A, C, E, or U depending on shipping destination.

Note 2: This rail mounting base is not suitable for the inverters of 5.5 kW (7.5 HP) or above

Mounting the NEMA1 kit	Figure B	Power supply voltage	Inverter type	Option type	Figure	
on the FRENIC-Mini series of inverters brings the inverter's enclosure			FRN0001C2S-2	NEMA1-C2-101		
	1000	Three-phase	FRN0004C2S-2	NEMA1-C2-102	A	
	0.	200 V	FRN0006C2S-2	NEMA1-C2-103		
into compliance with the	6 AT		FRN0010C2S-2	NEMA1-C2-201	в	
NEMA1 Standard (UL			FRN0012C2S-2	INEIVIA1-02-201	D	
TYPE1 certified).			FRN0020C2S-2	NEMA1-C2-301	С	
TTTET contined).			FRN0002C2S-4	NEMA1-C2-202		
		Three-phase 400 V	FRN0004C2S-4	NEMA1-C2-203	A	
			FRN0005C2S-4	NEMA1-C2-201	В	
	~ ~		FRN0007C2S-4	NEWIA1-02-201	В	
			FRN0011C2S-4	NEMA1-C2-301	С	
Figure A	Figure C		FRN0001C2S-7	NEMA1-C2-101		
			FRN0002C2S-7	NEWIA1-62-101		
		Single-phase	FRN0004C2S-7	NEMA1-C2-102	A	
	0.4	200 V	FRN0006C2S-7	NEMA1-C2-104	1	
00.T			FRN0010C2S-7	NEMA1-C2-204	В	
XO / N			FRN0012C2S-7	NEMA1-C2-301	С	
			FRN0001C2S-6U			
	1 I I I I I I I I I I I I I I I I I I I	Single-phase	FRN0002C2S-6U	NEMA1-C2-105		
		100 V	FRN0003C2S-6U	NEMA1-C2-106	A	
	· · ·		FRN0005C2S-6U	NEMA1-C2-205	1	

This option is not applicable to the EMC filter built-in type or inverters of 5.5 kW or above.

#### FRE can boa mou the con seri (4.0 kW/

High Perfomance Compact Body Welcome to the NEXT Generation of Compact I

#### Wiring equipment

_	Applicable			, ELCB irrent [A]	Magnetic co MC1 (for inp	ontactor type out circuit)	Magnetic contactor	Recomme	nded wire si	ze (mm2) at 50°C (122°F) or below			
Power supply voltage	motor rating	Inverter type	DC react	DC reactor (DCR)		DC reactor (DCR) type		Main circuit power input [L1/R , L2/S , L3/T] or [L1/L, L2/N]		Inverter output	DC reactor	Braking resistor	
	[kW]		w/ DCR	w/o DCR	w/ DCR	w/o DCR	circuit)	w/ DC reactor (DCR)	w/o DC reactor (DCR)	[U, V, W]	[P1, P(+)]	[P(+), DB]	
	0.1	FRN0001C2S-2	5 (6)	5 (6)	SC-05	SC-05	SC-05	2.0 (2.5)	2.0 (2.5)	2.0 (2.5)	2.0(2.5)	-	
	0.2	FRN0002C2S-2											
	0.4	FRN0004C2S-2			-							2.0 (2.5)	
-	0.75	FRN0006C2S-2		10	-								
Three-	1.5	FRN0010C2S-2	10	15 (16)	-								
phase	2.2	FRN0012C2S-2	00 (05)	20 (25)	-		-		5.5 (0)	0.5 (1)	0.5 (1.0)		
200 V	3.7	FRN0020C2S-2	20 (25)	30 (35)	00.4.0	SC-5-1	00.4.0	F F (0)	5.5 (6)	3.5 (4)	3.5 (4.0)		
	5.5	FRN0025C2S-2	30 (35)	50	SC-4-0	SC-5-1	SC-4-0	5.5 (6)	8 (10)	5.5 (6)	5.5 (6)		
	7.5	FRN0033C2S-2	40	75	SC-5-1	SC-N1	SC-5-1	8 (10)	14 (16)	8 (10)	14 (16)		
	11 15	FRN0047C2S-2	50	100	SC-N1	SC-N2S	SC-N1	14 (16)	22 (25)	14 (16)	22 (25)		
		FRN0060C2S-2	75	125	SC-N2	SC-N3	SC-N2	22 (25)	38 (50)	22 (25)	38 (50)	2 0 (2 E)	
	0.4	FRN0002C2 -4	5 (6)	5 (6)	SC-05	SC-05	SC-05	2.0 (2.5)	2.0 (2.5)	2.0 (2.5)	2.0 (2.5)	2.0 (2.5)	
	1.5	FRN0004C2 -4 FRN0005C2 -4		10	-								
Thurse	2.2	FRN0005C2 -4	-	15 (16)	-								
Three- phase		FRN0007C2 -4	10	20 (25)	-								
400 V	5.5	FRN0011C2 -4	15 (16)	30 (35)	-				3.5 (4)				
400 V	7.5	FRN0018C2 -4	20 (25)	40	-	SC-4-0	-		5.5 (6)	3.5 (4)	3.5 (4)		
	11	FRN0024C2 -4	30 (35)	50	SC-4-0	SC-N1	SC-4-0	5.5 (6)	8 (10)	5.5 (6)	5.5 (6)		
	15	FRN0030C2 -4	40	60	SC-5-1	30-111	SC-5-1	8 (10)	14 (16)	8 (10)	14 (16)		
	0.1	FRN0001C2 -7	5 (6)	5 (6)	SC-05	SC-05	SC-05	2.0 (2.5)	2.0 (2.5)	2.0 (2.5)	2.0 (2.5)	-	
	0.2	FRN0002C2 -7	0 (0)	0 (0)	00 00		00 00	2.0 (2.0)	2.0 (2.0)	2.0 (2.0)	2.0 (2.0)		
Single-	0.4	FRN0004C2 -7		10								2.0 (2.5)	
phase	0.75	FRN0006C2 -7	10	15 (16)								(0)	
200 V	1.5	FRN0010C2 -7	15 (16)	20 (25)					3.5 (4.0)				
	2.2	FRN0012C2 -7	20 (25)	30 (35)	1	SC-5-1	1	3.5 (4.0)	5.5 (6.0)		3.5 (4.0)		
	0.1	FRN0001C2S-6U	5 (6)	5 (6)	SC-05	SC-05	SC-05	2.0 (2.5)	2.0 (2.5)	2.0 (2.5)	-	-	
Single-	0.2	FRN0002C2S-6U		10					. (	. ()			
phase	0.4	FRN0003C2S-6U	10	15 (16)	1							2.0 (2.5)	
100 V	0.75	FRN0005C2S-6U	15 (16)	20 (25)	1				3.5 (4.0)			/	

Note) The symbol ■ is replaced with either of the following letters ■: S (Standard type), E (EMC filter built-in type) •For molded-case circuit breakers (MCCB) and earth-leakage circuit breakers (ELCB), the required frame type and series depend on the facility transformer capacity and other factors. When selecting optimal breakers, refer to the relevant technical data. Also select the rated sensitive current of ELCB utilizing the technical data. •The recommended wire sizes are based on the temperature inside the panel not exceeding 50°C. •The above wires are 600V HIV insulated solid wires (75°C). •Data in the above table may differ accortding to environmental conditions (ambient temperature, power supply voltage, and other factors).

# MEMO

High Perfomance Compact Body Welcome to the NEXT Generation of Compact Inv

**MEMO** 

#### When running general-purpose motors

- Driving a 400V general-purpose motor When driving a 400V general-purpose motor with an inverter using extremely long cables, damage to the insulation of the motor may occur. Use an output circuit filter (OFL) if necessary after checking with the motor manufacturer. Fuji's motors do not require the use of output circuit filters because of their reinforced insulation.
- Torque characteristics and temperature rise When the inverter is used to run a general-purpose motor, the temperature of the motor becomes higher than when it is operated using a commercial power supply. In the low-speed range, the cooling effect will be weakened, so decrease the output torque of the motor. If constant torque is required in the low-speed range, use a Fuji inverter motor or a motor equipped with an externally powered ventilating fan.

#### Vibration

When the motor is mounted to a machine, resonance may be caused by the natural frequencies, including that of the machine. Operation of a 2-pole motor at 60Hz or more may cause abnormal vibration.

- * Study use of tier coupling or dampening rubber.
- * It is also recommended to use the inverter jump frequencies control to avoid resonance points.
- Noise

When an inverter is used with a general-purpose motor, the motor noise level is higher than that with a commercial power supply. To reduce noise, raise carrier frequency of the inverter. High-speed operation at 60Hz or more can also result in more noise.

#### When running special motors

#### Explosion-proof motors

When driving an explosion-proof motor with an inverter, use a combination of a motor and an inverter that has been approved in advance.

Brake motors

For motors equipped with parallel-connected brakes, their braking power must be supplied from the primary circuit (commercial power supply). If the brake power is connected to the inverter power output circuit (secondary circuit) by mistake, problems may occur.

Do not use inverters for driving motors equipped with series-connected brakes.

#### Geared motors

If the power transmission mechanism uses an oillubricated gearbox or speed changer/reducer, then continuous motor operation at low speed may cause poor lubrication. Avoid such operation.

#### Single-phase motors

Single-phase motors are not suitable for inverterdriven variable speed operation. Use three-phase motors.

# NOTES

#### **Environmental conditions**

#### Installation location

Use the inverter in a location with an ambient temperature range of -10°C (14°F) to 50°C (122°F). The inverter and braking resistor surfaces become hot under certain operating conditions. Install the inverter on nonflammable material such as metal. Ensure that the installation location meets the environmental conditions specified in "Environment" in inverter specifications.

#### Combination with peripheral devices

#### Installing a molded case circuit breaker (MCCB)

Install a recommended molded case circuit breaker (MCCB) or an earth leakage circuit breaker (ELCB) in the primary circuit of each inverter to protect the wiring. Ensure that the circuit breaker capacity is equivalent to or lower than the recommended capacity.

 Installing a magnetic contactor (MC) in the output (secondary) circuit

If a magnetic contactor (MC) is mounted in the inverter's secondary circuit for switching the motor to commercial power or for any other purpose, ensure that both the inverter and the motor are fully stopped before you turn the MC on or off. Remove the surge killer integrated with the MC.

#### Installing a magnetic contactor (MC) in the input (primary) circuit

Do not turn the magnetic contactor (MC) in the primary circuit on or off more than once an hour as an inverter fault may result. If frequent starts or stops are required during motor operation, use FWD/REV signals.

#### · Protecting the motor

The electronic thermal facility of the inverter can protect the general-purpose motor. The operation level and the motor type (general-purpose motor, inverter motor) should be set. For high-speed motors or water-cooled motors, set a small value for the thermal time constant to protect the motor.

If you connect the motor thermal relay to the motor with a long cable, a high-frequency current may flow into the wiring stray capacitance. This may cause the relay to trip at a current lower than the set value for the thermal relay. If this happens, lower the carrier frequency or use the output circuit filter (OFL).

## Discontinuance of power-factor correcting capacitor Do not mount power factor correcting capacitor in

Do not mount power factor correcting capacitors in the inverter (primary) circuit. (Use the DC REACTOR to improve the inverter power factor.) Do not use power factor correcting capacitors in the inverter output circuit (secondary). An overcurrent trip will occur, disabling motor operation.

#### Discontinuance of surge killer

Do not mount surge killers in the inverter output (secondary) circuit.

#### Reducing noise

Use of a filter and shielded wires are typical measures against noise to ensure that EMC Directives are met.

#### • Measures against surge currents

If an overvoltage trip occurs while the inverter is stopped or operated under a light load, it is assumed that the surge current is generated by open/close of the phase-advancing capacitor in the power system.

We recommend connecting a DC REACTOR to the inverter.

#### Megger test

When checking the insulation resistance of the inverter, use a 500V megger and follow the instructions contained in the Instruction Manual.

#### Wiring

#### Wiring distance of control circuit

When performing remote operation, use twisted shielded wire and limit the distance between the inverter and the control box to 20m (65.6ft).

 Wiring length between inverter and motor If long wiring is used between the inverter and the motor, the inverter will overheat or trip as a result of overcurrent (highfrequency current flowing into the stray capacitance) in the wires connected to the phases. Ensure that the wiring is

where connected to the phases. Ensure that the winning is shorter than 50m (164ft). If this length must be exceeded, lower the carrier frequency or mount an output circuit filter (OFL). When wiring is longer than 50m (164ft), and sensorless vector control or vector control with speed sensor is selected, execute off-line tuning.

#### Wiring size

Select cables with a sufficient capacity by referring to the current value or recommended wire size.

#### Wiring type

Do not use multicore cables that are normally used for connecting several inverters and motors.

#### Grounding

Securely ground the inverter using the grounding terminal.

#### Selecting inverter capacity

#### Driving general-purpose motor

Select an inverter according to the applicable motor ratings listed in the standard specifications table for the inverter. When high starting torque is required or quick acceleration or deceleration is required, select an inverter with a capacity one size greater than the standard.

#### • Driving special motors

Select an inverter that meets the following condition: Inverter rated current > Motor rated current.

#### Transportation and storage

When transporting or storing inverters, follow the procedures and select locations that meet the environmental conditions that agree with the inverter specifications.

# FƏ Fuji Electric Co., Ltd.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo 141-0032, Japan Phone: +81-3-5435-7057 Fax: +81-3-5435-7420 URL: http://www.fujielectric.com/

Printed on recycled paper

Information in this catalog is subject to change without notice.

Printed in Japan 2014-11(K14d/L12)CM 00 FOLS

Dealers Industrial Equipment -- Visit https://DealersElectric.com or call (908) 688-1966 for all of your electric motor & VFD needs