

Technical Data

VARIDYNETM 2

Model sizes A to C and 2 to 6

AC variable speed drive for 3 phase induction motors

Part Number: 0472-0101-05

Issue: 5

General Information

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation or adjustment of the optional parameters of the equipment or from mismatching the variable speed drive with the motor.

The contents of this guide are believed to be correct at the time of printing. In the interests of commitment to a policy of continuous development and improvement, the manufacturer reserves the right to change the specification of the product or its performance, or the content of the guide without notice.

All rights reserved. No parts of this guide may be reproduced or transmitted in any form or by any means, electrical or mechanical including, photocopying, recording or by an information storage or retrieval system, without permission in writing from the publisher.

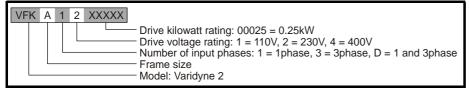
Drive software version

This product is supplied with the latest version of user-interface and machine control software. If this product is to be used in a new or existing system with other drives, there may be some differences between their software and the software in this product. These differences may cause the product to function differently. This may also apply to drives returned from a Service Centre.

If there is any doubt, please contact the supplier of the drive.

Contents

1		Technical data	
	1.1	VARIDYNE 2 size A to C	
	1.2	VARIDYNE 2 size 2 to 6	88
2		Derating curves and losses	18
_	2.1	Size A	
	2.2	Size B	
	2.3	Size C	
	2.4	Size 2	28
	2.5	Size 3	30
	2.6	Size 4	32
	2.7	Size 5	34
	2.8	Size 6	35
	2.9	Derating with glanding box and Cover kit (size A to C only)	36
3		Drive voltage levels	37
•	3.1	Input voltage	
	3.2	Single phase ratings (size 2 and 3)	
4		DC bus design	30
_	4.1	VARIDYNE 2 size A to C	
	4.2	VARIDYNE 2 size 2 to 6	
_			
5		Mechanical installation	
	5.1	VARIDYNE 2 size A to C	
	5.2	VARIDYNE 2 size 2 to 6	
	5.3	Sizing a braking resistor	
	5.4	Terminal sizes and torque settings	00
6		EMC	
	6.1	VARIDYNE 2 size A to C	
	6.2	VARIDYNE 2 size 2 to 6	68
7		AC line reactors	85
	7.1	Line reactors	85
	7.2	Reactor current ratings	86
	7.3	Input line reactors for harmonics standards EN61000-3-2 and IEC61000-3-2	86
8		Motor cable lengths	88
-	8.1	VARIDYNE 2 size A to C	
	8.2	VARIDYNE 2 size 2 to 6	


9	General data	89
9.1	Ratings	
9.2	Input phase imbalance	
9.3	Ambient temperature	
9.4	Storage temperature	
9.5	Altitude	
9.6	Humidity	
9.7	Storage humidity	
9.8	Pollution degree	
9.9	Materials	
9.10	Vibration	
9.11	Frequency accuracy	89
9.12	Resolution	
9.13	Output frequency range	
9.14	Starts per hour	
9.15	Start-up time	
9.16	Serial communications	
9.17	Switching frequencies	
9.18	Harmonics	
9.19	Acoustic noise	90
10	I/O specification	91
10.1	Drive reset	
10.2	Sample/update times	
10.3	Task routine times	
11	Supply types	94
11.1	AC supply requirements	
11.2	Safety	
11.3	Cables	
11.4	Fuses	
11.5	Ground connections	
11.6	Ground leakage	
12	Ontions	97

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Technical data

VARIDYNE 2 size A to C

Figure 1-1 Model code explanation

1.1.1 **VARIDYNE 2 110V size B units**

Table 1-1 Ratings

MODEL	VFK	(B11
MODEL	00075	00110
AC supply voltage and frequency	Single phase 100 to 12	0V ±10% 48Hz to 62Hz
Input displacement factor (cos∅)	>0.97	
Nominal motor power (kW)	0.75	1.1
Nominal motor power (hp)	1.0	1.5
Output voltage and frequency	3 phase, 0 to drive ratin	ng (240), 0 to 1500Hz***
100% RMS output current (A)	4.0	5.2
150% overload current for 60s (A)	6.0	7.8
Typical full load input current (A)	19.6	24.0
Maximum continuous input current (A)*		
Typical inrush current (A) (<10ms)	12	2.5
Weight (kg)	1.3	356
Weight (lb)		3
Internal EMC filter	Ye	es
DC bus terminals	Ye	s**
Din rail mounting	Ye	es

^{*} For 3ph input only at 2% negative phase sequence.

Table 1-2 Cables

Table 1-2 Cables						
MODEL		VFM	(B11			
MODEL		00075	00110			
Recommended input supply fuse (A)	IEC gG	25	32			
Control cable****	(mm ²)	≥().5			
Control cable	(AWG)	2	20			
Recommended input cable****	(mm ²)	4	.0			
recommended input capie	(AWG)	1	0			
Recommended motor cable****	(mm ²)	1	.0			
Tresemmented motor subject	(AWG)	1	6			
Recommended brake resistor****	(mm ²)	1	.0			
2.310 10000	(AWG)	16				

^{****} The maximum size of wire for the control terminals is 2.5mm²

Table 1-3 Braking resistor

MODEL	VFKB11				
MODEL	00075	00110			
Minimum braking resistor value $(\Omega)^{******}$	28	8			
Recommended braking resistor value (Ω)	10	00			
Resistor peak power rating (kW)	1.7				
Maximum braking current (A)	14.8				

^{*****} Resistor tolerance ±10%

VARIDYNE 2 Technical Data www.usmotors.com

^{**} The -DC bus terminal is not connected to the power terminal.

^{***} The 110V size B uses a voltage doubler circuit on the input.

^{*****} The maximum size of wire for the power terminals is 2.5mm² (Size A) and 4mm² (Size B and C)

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMO	AC line	Motor cable	General	I/O	Supply	0 11
data	and losses	levels	design	installation	EMC	reactors	lengths		specification		Options

Table 1-4 Cooling fan

MODEL		VFKB11					
MODEL		00075	00110				
Cooling fan fitted		Yes					
Air flow	(feet ³ /minute)	3.8					
All IIOW	(m ³ /minute)	0	.4				

1.1.2 VARIDYNE 2 200V size A to C units

Table 1-5 Ratings

		VF	(A12			VFK	BD2		VFK	CD2	
MODEL	00025	00037	00055	00075	00	110	001	150	002	220	
	00025	00037	00033	00073	1ph	3ph	1ph	3ph	1ph	3ph	
AC supply voltage and frequency	Single ph	nase 200 to 24	z to 62Hz	Sin	gle or 3	•	200 to to 62Hz	240V ±	:10%		
Input displacement factor (cos∅)				>0.97							
Nominal motor power (kW)	0.25	0.37	0.55	0.75	1.	.1	1	1.5		2.2	
Nominal motor power (hp)	0.33	0.50	0.75	1.0	1.	.5	2.0		2.0 3.0		
Output voltage and frequency			3 phase, 0 to	drive rating (2	40), 0 to	1500l	Hz				
100% RMS output current (A)	1.7	2.2	3.0	4.0	5	.2	7	.0	9.6		
150% overload current for 60s (A)	2.6	3.3	4.5	6	7.	.8	10).5	14.4		
Typical full load input current (A)	4.3	5.8	8.1	10.5	14.2	6.7	17.4	8.7	23.2	11.9	
Maximum continuous input current (A)*						9.2		12.6		17	
Typical inrush current (A) (<10ms)		17	7.0			27	7.4	U	18	3.3	
Weight (kg)	0.	95	1	.0	1.	.3	1	.4	2.1		
Weight (lb)	2	2.1 2.2		2	2.9 3.1		.1	4	.6		
Internal EMC filter				Yes							
DC bus terminals		١	lo				Y	es			
Din rail mounting			Y	'es					N	lo	

^{*} For 3ph input only at 2% negative phase sequence.

Table 1-6 Cables

			VF	KA12			VFKBD2				VFKCD2	
MODEL	00025	00037	00055	00075	00110		00150		00	220		
	00025	00037	00055	00075	1ph	3ph	1ph	3ph	1ph	3ph		
Recommended input supply fuse (A)	IEC gG	6	10		16	16	10	20	16	25	20	
Recommended input supply ruse (A)	Class CC	5	10		15	15	10	20	15	25	20	
Control cable****	(mm ²)	≥0.5					≥0.5					
Control cable	(AWG)		20									
Recommended input cable*****	(mm ²)	1.0 1.5				2.5	1.5	2.5	1.5	4.0	2.5	
Recommended input cable	(AWG)	16 14				12	14	12	14	10	12	
Recommended motor cable*****	(mm ²)	1.0					1.0				1.5	
Neconinended motor cable	(AWG)			16			1	6		1	4	
Recommended brake resistor****	(mm ²)	1.0					1.0				1.5	
Trecommended brake resistor	(AWG)			16		16				14		

^{****} The maximum size of wire for the control terminals is 2.5mm²

Table 1-7 Braking resistor

MODEL		VF	A12	VFK	VFKCD2		
MODEL	00025	00037	00055	00075	00110	00150	00220
Minimum braking resistor value $(\Omega)^{******}$		6	8		2	8	28
Recommended braking resistor value (Ω)	200			150	100		50
Resistor peak power rating (kW)	0.9			1.1	1.	3.4	
Maximum braking current (A)	6.1				14	14.8	

^{******} Resistor tolerance ±10%

6

^{*****} The maximum size of wire for the power terminals is 2.5mm² (Size A) and 4mm² (Size B and C)

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	LIVIC	reactors	lengths	data	specification	types	Options

Table 1-8 Cooling fan

MODEL			VFK	A12		VFK	VFKCD2	
MODEL	00025	00037	00055	00075	00110	00150	00220	
Cooling fan fitted			N	0	Ye	Yes		
Air flow	Air flow (feet ³ /minute)				3.8			
(m ³ /minute)							0.4	

1.1.3 VARIDYNE 2 400V size A to C units

Table 1-9 Ratings

MODEL			VFKB34				VFKC34			
MODEL	00037	00055	00075	00110	00150	00220	00300	00400		
AC supply voltage and frequency			3 phase	380 to 480\	/ ±10% 48Hz	to 62Hz	•	•		
Input displacement factor (cos∅)				>0	.97					
Nominal motor power (kW)	0.37	0.55	0.75	1.1	1.5	2.2	3.0	4.0		
Nominal motor power (hp)	0.5	0.75	1.0	1.5	2.0	3.0	3.0	5.0		
Output voltage and frequency			3 phase,	0 to drive ra	ting (480), 0	to 1500Hz	•	•		
100% RMS output current (A)	1.3	1.7	2.1	2.8	3.8	5.1	7.2	9.0		
150% overload current for 60s (A)	2	2.6	3.2	4.2	5.7	7.7	10.8	13.5		
Typical full load input current (A)	1.7	2.5	3.1	4	5.2	7.3	9.5	11.9		
Maximum continuous input current (A)*	2.5	3.1	3.75	4.6	5.9	9.6	11.2	13.4		
Typical inrush current (A) (<10ms)			17.0	•			11.3	•		
Weight (kg)		1.2		1	.3		2.1			
Weight (lb)		2.7		2	9		4.6			
Internal EMC filter				Y	es					
DC bus terminals				Y	es					
Din rail mounting			Yes				No			

^{*} For 3 phase input only at 2% negative phase sequence.

Table 1-10 Cables

MODEL				VFKB34				VFKC34		
MODEL		00037	00055	00075	00110	00150	00220	00300	00400	
Recommended input supply fuse (A)	IEC gG			5	•	10	16			
Recommended input supply fuse (A)	Class CC			10	15					
Control cable****	(mm ²)	≥0.5						≥0.5		
Control cable	(AWG)			20				20		
Recommended input cable *****	(mm ²)	1.0					1.	5	2.5	
Recommended input cable	(AWG)			14						
Recommended motor cable*****	(mm ²)	1.0					1.0			
recommended motor cable	(AWG)				1	6	14			
Recommended brake resistor cable*****	(mm ²)	1.5					1.5			
	(AWG)	14					14			

^{****} The maximum size of wire for the control terminals is 2.5mm^2

Table 1-11 Braking resistor

MODEL			VFKB34			VFKC34		
WODEL	00037	00055	00075	00110	00150	00220	00300	00400
Minimum braking resistor value (Ω)******		100				100	55	
Recommended braking resistor value (Ω)			200			200	150	100
Resistor peak power rating (kW)		3.4					4.6	6.9
Maximum braking current (A)		8.3			8.3	15	5.1	

^{******} Resistor tolerance ±10%

VARIDYNE 2 Technical Data

^{*****} The maximum size of wire for the power terminals is 2.5mm² (size A) and 4mm² (size B and C)

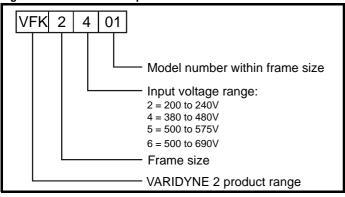

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

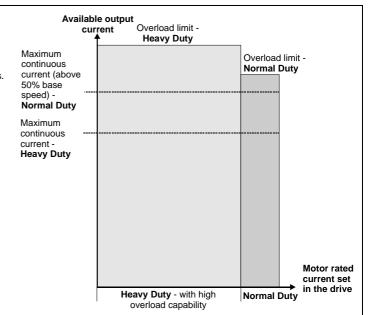
Table 1-12 Cooling fan

MODEL				VFKB34			VFKC34			
WIODEL		00037	00055	00075	00110	00150	00220	00300	00400	
Cooling fan fitted			No		Y	es	Yes			
Air flow	Air flow (feet ³ /minute)					3.8				
(m ³ /minute)							0.4			

1.2 VARIDYNE 2 size 2 to 6

Figure 1-2 Model code explanation

8 VARIDYNE 2 Technical Data Issue Number: 5


The VARIDYNE 2 sizes 2 to 6 are dual rated.

The setting of the motor rated current determines which rating applies -Heavy Duty or Normal Duty.

The two ratings are compatible with motors designed to IEC60034.

The graph aside illustrates the difference between Normal Duty and Heavy

Duty with respect to continuous current rating and short term overload limits.

Normal Duty

For applications which use self ventilated induction motors and require a low overload capability (e.g. fans, pumps).

Self ventilated induction motors require increased protection against overload due to the reduced cooling effect of the fan at low speed. To provide the correct level of protection the I²t software operates at a level which is speed dependent. This is illustrated in the graph below.

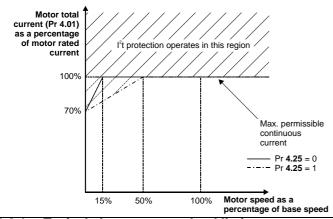
NOTE

The speed at which the low speed protection takes effect can be changed by the setting of Pr 4.25. The protection starts when the motor speed is below 15% of base speed when Pr 4.25 = 0 (default) and below 50% when Pr 4.25 = 1. See the VARIDYNE 2 Advanced User Guide, Menu 4 for further details.

Heavy Duty (default)

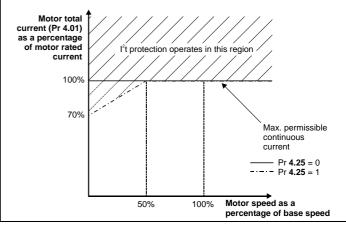
For constant torque applications or applications which require a high overload capability (e.g. cranes, hoists).

The thermal protection is set to protect force ventilated induction motors by default.


If the application uses a self ventilated motor and increased thermal protection is required for speeds below 50% base speed, then this can be enabled by setting Pr 4.25 = 1.

See the VARIDYNE 2 Advanced User Guide, Menu 4 for further details.

Operation of motor l^2t protection (It.AC trip)


Motor I²t protection is fixed as shown below and is compatible with:

Self ventilated induction motors

Motor I²t protection defaults to be compatible with:

Forced ventilation induction motors

Typical short term overload limits

The maximum percentage overload limit changes depending on the induction motor only. Variations in motor rated current, motor rated power factor and motor leakage inductance all result in changes in the maximum possible overload. The exact value for a specific motor can be calculated using the equations detailed in Menu 4 in the VARIDYNE 2 Advanced User Guide.

Table 1-13 Typical overload limits for size 2 to 5

	From cold	From 100% full load
Normal duty overload with motor rated current = drive rated current	110% for 215s	110% for 5s
Heavy duty overload with motor rated current = drive rated current	150% for 60s	150% for 8s
Heavy duty overload with a typical 4 pole motor	175% for 40s	175% for 5s

VARIDYNE 2 Technical Data

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Table 1-14 Typical overload limits for size 6

	From cold	From 100% full load
Normal duty overload with motor rated current = drive rated current	110% for 165s	110% for 9s
Heavy duty overload with motor rated current	129% for 97s	129% for 15s

Generally the drive rated current is higher than the matching motor rated current allowing a higher level of overload than the default setting as illustrated by the example of a typical 4 pole motor.

The time allowed in the overload region is proportionally reduced at very low output frequency on some drive ratings.

The maximum overload level which can be attained is independent of the speed.

VARIDYNE 2 200V size 2 to 4 units 1.2.2

Key:

- ◆ Refer to Table 1-13 on page 9 for typical overload limits
- * Typical input current

The values of typical input current are given to aid calculations for power flow and power loss (Normal Duty rating). The values of typical input current are stated for a balanced supply.

** Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worse case condition with the unusual combination of a stiff supply with bad balance (Normal Duty rating). The value stated for the maximum continuous input current would only been seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the following tables.

Table 1-15 Ratings

Model		VFK2		VF	K3		VFK4		
Model	201	202	203	201	202	201	202	203	
AC supply voltage and frequency			3 phase 2	200 to 240Va	c ±10% 48 to	65Hz		•	
Input displacement factor (cos ∅)				>0.9	7				
		Noi	mal duty						
Nominal motor power at 220V (kW)	4.0	5.5	7.5	11	15	18.5	22	30	
Nominal motor power at 230V (hp)	5.0	7.5	10	15	20	25	30	40	
100% RMS output current (A)	15.5	22	28	42	54	68	80	104	
		He	avy Duty					<u> </u>	
Nominal motor power (kW)	3.0	4.0	5.5	7.5	11	15	18.5	22	
Nominal motor power (hp)	3.0	5.0	7.5	11	15	20	25	30	
100% RMS output current (A)	12.6	17	25	31	42	56	68	80	
Peak current (A) ◆	18.9	25.5	37.5	46.5	63	84	102	120	
Typical full load input current (A) *	13.4	18.2	24.2	35.4	46.8	62.1	72.1	94.5	
Maximum continuous input current (A) **	18.1	22.6	28.3	43.1	54.3	68.9	78.1	99.9	
Typical inrush current (A)		12			8		73		
Maximum supply fault current (kA)				100	100				
Weight (kg)		7		1	5	30			
Weight (lb)		15.4		33	3.1		66.1		

Table 1-16 Size 2 and 3 fuses

Model			VFK2		VFK3		
Woder		201	202	203	201	202	
Recommended input supply fuse (A)	IEC gG	20	25	32	50	63	
	Class CC	20	25				
04ppi) 1400 (/1)	Class J			32	45	60	

10 VARIDYNE 2 Technical Data Issue Number: 5

^{****} Resistor tolerance ±10%

[^] Semi-conductor fuse in series with HRC fuse or circuit breaker

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	LIVIO	reactors	lengths	data	specification	types	Options

Table 1-17 Size 4 and 5 fuses

				VI	FK4		
Model		201	202	203	201	202	203
			Option 1			Option 2 [^]	
	IEC gR	100	100	125			
Recommended input	Ferraz HSJ	90	100	125			
supply fuse (A)	IEC gG UL class J				90	100	125
	IEC class aR				160	160	200

Table 1-18 Cables

Model			VFK2		VF	K3		VFK4	
	•	201	202	203	201	202	201	202	203
Control cable	(mm²)			•	≥().5		•	
Control cable	(AWG)				2	20			
Recommended input cable	(mm²)	4.0	4.0	6.0	16	25	25	35	70
Recommended input cable	(AWG)	12	10	8	6	4	3	3	1
Recommended motor	(mm²)	2.5	4.0	6.0	16	25	25	35	70
cable	(AWG)	14	10	8	6	4	3	3	1
Recommended brake	(mm²)	2.5	4.0	6.0	16	25	25	35	70
resistor	14	10	8	6	4	3	3	1	

Table 1-19 Braking resistor (minimum resistance values and peak power rating for the braking resistor at 40°C)

Model		VFK2		VF	K3		VFK4			
Wiodei	201	202	203	201	202	201	202	203		
Minimum braking resistor value $(\Omega)^{****}$		18		5	.0		5.0			
Resistor peak power rating (kW)		8.9		30.3			30.3			
Average power for 60s (kW)	6.0 8.0 8.9		13.1 19.3		22.5	27.8	30.3			

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

VARIDYNE 2 400V size 2 to 6 units 1.2.3

Key:

◆ Refer to Table 1-13 and Table 1-14 on page 10 for typical overload limits

* Typical input current

The values of typical input current are given to aid calculations for power flow and power loss (Normal Duty rating). The values of typical input current are stated for a balanced supply.

** Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worse case condition with the unusual combination of a stiff supply with bad balance (Normal Duty rating). The value stated for the maximum continuous input current would only been seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the following tables.

VFK2404 Power and current ratings

VARIDYNE 2 size 2 to 6 are dual rated except for the VFK2404 which only has a Heavy Duty rating. However, if the current limit in Pr 4.07 is set to a maximum of 110% and the switching frequency is greater than 3kHz, then the drive can be used at a maximum continuous current higher than the Heavy Duty rating. Normal Duty ratings exist for the VFK2404 above 3kHz when the overload is reduced from the default value of 165% to 110%.

If the current limit in Pr 4.07 is set higher than 110% then the Heavy Duty current ratings are applicable.

- **** Resistor tolerance ±10%
- ^ Semi-conductor fuse in series with HRC fuse or circuit breaker
- ^^ The minimum resistance value specified is for a stand-alone drive only. If the drive is part of a common DC bus system a different value must be used. Contact the supplier of the drive for more information

Table 1-20 Size 2 to 4 ratings

Model		VF	K2			VFK3			VFK4	
	401	402	403	404***	401	402	403	401	402	403
AC supply voltage and frequency			•	3 phase 3	80 to 480\	/ac ±10% 4	48 to 65Hz		•	•
Input displacement factor (cos ∅)					>0	.97				
			Norma	Duty						
Nominal motor power at 400V (kW)	7.5	11	15		18.5	22	30	37	45	55
Nominal motor power at 460V (hp)	10	15	20		25	30	40	50	60	75
100% RMS output current (A)	15.3	21	29		35	43	56	68	83	104
		•	Heavy	Duty				1		
Nominal motor power (kW)	5.5	7.5	11	15	15	18.5	22	30	37	45
Nominal motor power (hp)	10	10	20	20	25	30	30	50	60	75
100% RMS output current (A)	13	16.5	25	29	32	40	46	60	74	96
Peak current (A) ◆	19.5	24.7	34.5	43.5	48	60	69	90	111	144
Typical full load input current (A) *	15.7	20.2	26.6	26.6	34.2	40.2	51.3	61.2	76.3	94.1
Maximum continuous input current (A) **	17	21.4	27.6	27.6	36.2	42.7	53.5	62.3	79.6	97.2
Typical inrush current (A)	24 14 37 73						'3			
Maximum supply fault current (kA)		10	00			100			100	
Weight (kg)			7			15			30	
Weight (lb)	15.4 33.1 66.1									

12 VARIDYNE 2 Technical Data Issue Number: 5

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
data	and losses	levels	design	installation	LIVIO	reactors	lengths	data	specification	types	Options

Table 1-21 Size 5 and 6 ratings

Model	VF	-K5	VF	K6
Model	401	402	401	402
AC supply voltage and frequency		3 phase 380 to 480\	/ac ±10% 48 to 65Hz	<u>I</u>
Input displacement factor (cos ∅)		>0	.97	
-	N	Normal Duty		
Nominal motor power (kW)	75	90	110	132
Nominal motor power (hp)	100	125	150	200
100% RMS output current (A)	138	168	205	236
-		Heavy Duty	-	
Nominal motor power (kW)	55	75	90	110
Nominal motor power (hp)	100	125	150	150
100% RMS output current (A)	124	156	180	210
Peak current (A) ◆	186	234	231	270
Typical full load input current (A) *	126	152	206	247
Maximum continuous input current (A) **	131	156	215	258
Typical inrush current (A)	1	10		
Maximum supply fault current (kA)		10	00	•
Weight (kg)	Ę	55	7	5
Weight (lb)	12	1.3	16	5.3

Table 1-22 Size 2 and 3 fuses

Model			VF	K2			VFK3	
Wiodei		401	402	403	404	401	402	403
Recommended input	IEC gG	20	25	32	32	40	50	63
I	Class CC	20	25					
supply fuse (A)	Class J			30	30	40	45	60

Table 1-23 Size 4 to 6 fuses

				VF	K4				VF	K5			VF	K6	
Model		401	402	403	401	402	403	401	402	401	402	401	402	401	402
		(Option	1	С	ption 2	^	Opti	on 1	Optio	on 2^	Opti	on 1	Optio	on 2^
	IEC gR	80	110	125				200	250			250	315		
Recommended input	Ferraz HSJ	80	110	125				175	225			250	300		
supply fuse (A)	IEC gG UL class J				80	100	125			160	200			250	300
	IEC class aR				160	200	200			200	250			315	350

Table 1-24 Size 2 to 4 cables

Model			VF	K2			VFK3			VFK4	
Woder		401	402	403	404	401	402	403	401	402	403
Control cable	(mm²)		•			≥C).5			•	•
Control cable	(AWG)					2	0				
Recommended input cable (mm²)		4.0	4.0	6.0	6.0	10	16	25	25	35	70
Recommended input cable	(AWG)	12	10	8	8	6	6	4	3	2	1
Recommended motor cable	(mm²)	2.5	4.0	6.0	6.0	10	16	25	25	35	70
Recommended motor cable	(AWG)	14	10	8	8	6	6	4	3	2	1
Recommended brake resistor	(mm²)	2.5	4.0	6.0	6.0	10	16	25	25	35	70
Necommended brake resistor	14	10	8	8	6	6	4	3	2	1	

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Table 1-25 Size 5 and 6 cables

Model		VF	(5	VF	K6
Wodei		401	402	401	402
Control cable	(mm²)	'	≥(0.5	•
Control cable	(AWG)		2	0	
Recommended input cable	(mm²)	95	120	2 x 70	2 x 120
Recommended input cable	(AWG)	2/0	4/0	2 x 2/0	2 x 4/0
Recommended motor cable	(mm²)	95	120	2 x 70	2 x 120
Recommended motor cable	(AWG)	2/0	4/0	2 x 2/0	2 x 4/0
Recommended brake resistor	(mm²)	95	120	2 x 70	2 x 120
Recommended brake resistor	(AWG)	2/0	4/0	2 x 2/0	2 x 4/0

Table 1-26 Braking resistor (minimum resistance values and peak power rating for the braking resistor at 40°C)

Model	VFK2				VFK3		,	VFK4^^ VFK5^^			VFK6			
Wodel	401	402	403	404	401	402	403	401	402	403	401	402	401	402
Minimum braking resistor value $(\Omega)^{****}$		19				18		11		9	7		į	5
Resistor peak power rating (kW)		33.1			35.5		55.3		67.6	86	5.9	12	1.7	
Average power for 60s (kW)	9.6 13.1 19.3 22.5		22.5	22.5	27.8	33.0	45.0	53.0	67.5	82.5	86.9	90	110	

1.2.4 VARIDYNE 2 575V size 3 to 6 units

Key:

- ◆ Refer to Table 1-13 and Table 1-14 on page 10 for typical overload limits
- * Typical input current

The values of typical input current are given to aid calculations for power flow and power loss (Normal Duty rating). The values of typical input current are stated for a balanced supply.

** Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worse case condition with the unusual combination of a stiff supply with bad balance (Normal Duty rating). The value stated for the maximum continuous input current would only been seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the following tables.

Table 1-27 Size 3 ratings

Model				VFK3						
Model	501	502	503	504	505	506	507			
AC supply voltage and frequency		•	3 phase 500	to 575Vac ±10	% 48 to 65Hz	•	•			
Input displacement factor (cos ∅)				>0.97						
-		Norn	nal Duty							
Nominal motor power (kW)	3.0	4.0	5.5	7.5	11	15	18.5			
Nominal motor power (hp)	3.0	5.0	7.5	10	15	20	25			
100% RMS output current (A)	5.4	6.1	8.4	11	16	22	27			
-		Heav	y Duty		l .	l .	•			
Nominal motor power at 575V (kW)	2.2	3.0	4.0	5.5	7.5	11	15			
Nominal motor power at 575V (hp)	2.0	3.0	5.0	7.5	10	15	20			
100% RMS output current (A)	4.1	5.4	6.1	9.5	12	18	22			
Peak current (A) ◆	6.1	8.1	9.1	14.2	18	27	33			
Typical full load input current (A) *	5.0	6.0	7.8	9.9	13.8	18.2	22.2			
Maximum continuous input current (A) **	6.7	8.2	11.1	14.4	18.1	22.2	26.0			
Typical inrush current (A)		1	8	1			ı			
Maximum supply fault current (kA)				100	•					
Weight (kg)	15									
Weight (lb)				33.1						

14 VARIDYNE 2 Technical Data Issue Number: 5

^{****} Resistor tolerance ±10%

[^] Semi-conductor fuse in series with HRC fuse or circuit breaker

^{^^} The minimum resistance value specified is for a stand-alone drive only. If the drive is part of a common DC bus system a different value must be used. Contact the supplier of the drive for more information

3 3	lechanical FMC A	AC line Motor cable General reactors lengths data	I/O Supply specification types	Options
-----	------------------	---	--------------------------------	---------

Table 1-28 Size 4 to 6 ratings

Model		VF	-K4		VF	K5	VF	K6
Model	603	604	605	606	601	602	601	602
AC supply voltage and frequency			3 phas	e 500 to 575\	/ac ±10% 48	to 65Hz	<u> </u>	
Input displacement factor (cos ∅)				>0	.97			
-		N	Iormal Duty					
Nominal motor power (kW)	22	30	37	45	55	75	90	110
Nominal motor power (hp)	30	40	50	60	75	100	125	150
100% RMS output current (A)	36	43	52	62	84	99	125	144
•		ŀ	leavy Duty	•		•		
Nominal motor power (kW)	18.5	22	30	37	45	55	75	90
Nominal motor power (hp)	25	30	40	50	60	75	100	125
100% RMS output current (A)	27	36	43	52	63	85	100	125
Peak current (A) ◆	40.5	54	64.5	78	93	126	128	160
Typical full load input current (A) *	32.9	39	46.2	55.2	75.5	89.1	128	144
Maximum continuous input current (A) **	35.1	41	47.9	56.9	82.6	94.8	139	155
Typical inrush current (A)		:	35		7	0		
Maximum supply fault current (kA)				10	00			
Weight (kg)		3	30		55 75			
Weight (lb)		6	6.1		12	1.3	16	5.3

The power ratings above for model size 4 and larger are for the 690V drives when used on a 500V to 575V supply.

Table 1-29 Fuses

Model					VFK3			
		501	502	503	504	505	506	507
Recommended input supply fuse (A)	IEC gG	8	10	12	16	20	25	32
	Class CC	10	10	15	15	20	25	
Supply Tube (71)	Class J							30

Table 1-30 Cables

Model					VFK3			
Wodei		501	502	503	504	505	506	507
Control cable	(mm²)		•	•	≥0.5	•	•	•
Control cable	(AWG)				20			
Recommended input cable	(mm²)	1.0	1.0	1.5	2.5	4.0	4.0	6.0
	(AWG)	16	16	14	14	12	10	8
Recommended motor cable	(mm²)	1.0	1.0	1.0	1.5	2.5	4.0	6.0
Recommended motor cable	(AWG)	18	16	14	14	14	10	8
Recommended brake	(mm²)	1.0	1.0	1.0	1.5	2.5	4.0	6.0
resistor	(AWG)	18	16	14	14	14	10	8

Table 1-31 Braking resistor (minimum resistance values and peak power rating for the braking resistor at 40°C)

Model	VFK3										
Wodel	501	502	503	504	505	506	507				
Minimum braking resistor value $(\Omega)^{****}$				18							
Resistor peak power rating (kW)	50.7										
Average power for 60s (kW)	4.4	6.0	8.0	9.6	13.1	19.3	22.5				

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

1.2.5 VARIDYNE 2 690V size 4 to 6 units

Key:

- ◆ Refer to Table 1-13 and Table 1-14 on page 10 for typical overload limits
- * Typical input current

The values of typical input current are given to aid calculations for power flow and power loss (Normal Duty rating).

The values of typical input current are stated for a balanced supply.

** Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worse case condition with the unusual combination of a stiff supply with bad balance (Normal Duty rating). The value stated for the maximum continuous input current would only been seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated with a 2% negative phase-sequence imbalance and rated at the maximum supply fault current given in the following tables.

- **** Resistor tolerance ±10%
- ^ Semi-conductor fuse in series with HRC fuse or circuit breaker
- ^^ The minimum resistance value specified is for a stand-alone drive only. If the drive is part of a common DC bus system a different value must be used. Contact the supplier of the drive for more information

Table 1-32 Size 4 ratings

Model			VF	K4			
Model	601	602	603	604	605	606	
AC supply voltage and frequency		3 p	hase 500 to 690\	ac ±10% 48 to 6	5Hz		
Input displacement factor (cos ∅)			>0	.97			
		Normal Du	uty				
Nominal motor power (kW)	18.5	22	30	37	45	55	
Nominal motor power (hp)	25	30	40	50	60	75	
100% RMS output current (A)	22	27	36	43	52	62	
		Heavy Du	ity		-	•	
Nominal motor power at 690V(kW)	15	18.5	22	30	37	45	
Nominal motor power at 690V (hp)	20	25	30	40	50	60	
100% RMS output current (A)	19	22	27	36	43	52	
Peak current (A) ◆	27	33	40.5	54	64.5	78	
Typical full load input current (A) *	23	26.1	32.9	39	46.2	55.2	
Maximum continuous input current (A) **	26.5	28.8	35.1	41	47.9	56.9	
Typical inrush current (A)			3	5	•		
Maximum supply fault current (kA)			10	00			
Weight (kg)			3	0			
Weight (lb)	Normal Duty 18.5 22 30 37 45 25 30 40 50 60 60 22 27 36 43 52						

Table 1-33 Size 5 and 6 ratings

Model	VI	FK5	VF	K6
Model	601	602	601	602
AC supply voltage and frequency		3 phase 500 to 690Va	ac ±10% 48 to 65Hz	
Input displacement factor (cos ∅)		>0.0<	97	
•		Normal Duty		
Nominal motor power at 690V(kW)	75	90	110	132
Nominal motor power at 690V (hp)	100	125	150	175
100% RMS output current (A)	84	99	125	144
•		Heavy Duty		
Nominal motor power (kW)	55	75	90	110
Nominal motor power (hp)	75	100	125	150
100% RMS output current (A)	63	85	100	125
Peak current (A) ◆	93	126	128	160
Typical full load input current (A) *	75.5	89.1	128	144
Maximum continuous input current (A) **	82.6	94.8	139	155
Typical inrush current (A)	-	70		
Maximum supply fault current (kA)		10	0	
Weight (kg)		55	7	5
Weight (lb)	12	21.3	16	5.3

16 VARIDYNE 2 Technical Data

Technical Derating contact and loss	urves Drive voltage ses levels	DC bus design	Mechanical installation	EMC	AC line reactors	Motor cable lengths	General data	I/O specification	Supply types	Options	l
-------------------------------------	-----------------------------------	------------------	-------------------------	-----	------------------	---------------------	-----------------	----------------------	--------------	---------	---

Table 1-34 Size 4 fuses

							VF	(4					
Model		601	602	603	604	605	606	601	602	603	604	605	606
		Option 1 Option 2^						ı					
	63 80												
	Ferraz HSJ			(30								
Recommended input supply fuse (A)	IEC gG UL class J							32	40	50	50	63	63
IEC class aR								125	125	125	125	125	125

Table 1-35 Size 5 and 6 fuses

			VF	K5		VFK6				
Model		601	602	601	602	601	602	601	602	
		Option 1		Optio	Option 2 [^]		Option 1		on 2^	
	IEC gR	125	125			160	160			
Recommended input	Ferraz HSJ	100	100			175	175			
supply fuse (A)	IEC gG UL class J			90	125			150	160	
	IEC class aR			160	160			315	315	

Table 1-36 Cables

Model		VFK4							K5	VF	K6
Wodei		601	602	603	604	605	606	601	602	601	602
Control cable (mm²) (AWG)				≥().5				≥().5	
				2	20						
Decemberded input coble	(mm²)	4	6	10	16	16	25	35	50	2 x 50	2 x 50
Recommended input cable	(AWG)	10	8	8	6	6	4	2	1	2 x 1	2 x 1
Recommended motor cable	(mm²)	4	6	10	16	16	25	35	50	2 x 50	2 x 50
Recommended motor cable	(AWG)	10	8	8	6	6	4	2	1	2 x 1	2 x 1
Recommended brake resistor	(mm²)	4	6	10	16	16	25	35	50	2 x 50	2 x 50
Recommended blake resistor	(AWG)	10	8	8	6	6	4	2	1	2 x 1	2 x 1

Table 1-37 Braking resistor (minimum resistance values and peak power rating for the braking resistor at 40°C)

Model			VFK	VFK5^^		VFK6				
Wiodel	601	602	603	604	605	606	601	602	601	602
Minimum braking resistor value $(\Omega)^{****}$	13				10		1	0		
Resistor peak power rating (kW)		95.0				12	5.4	12	5.4	
Average power for 60s (kW)	19.3	22.5	27.8	33.0	45.0	55.5	67.5	82.5	112.5	125.4

17 VARIDYNE 2 Technical Data Issue Number: 5

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Cumply troppe	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	Supply types	Options

Derating curves and losses 2

The derating curves are based on the results of heatruns that are carried out to measure temperatures of various components and at various key points within the drive at different switching frequencies, different loads and different ambient temperatures. The key components/points are:

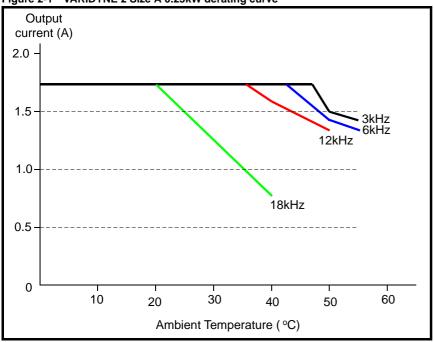
- Heatsink
- Bridge rectifier
- **IGBTs**
- DC bus capacitors
- Various electrolytic capacitors
- Various resistors
- Various semiconductor components

It is not always the heatsink temperature that is the limiting factor for the de-rating curves.

At 3 and 6kHz, the limiting factor tends to be the capacitor temperatures. Operating outside the derating curves will cause some of the capacitors within the drive to run outside of their maximum operating temperature and this could lead to the drives design lifetime being reduced.

At 12 and 18kHz (18kHz where applicable) the limiting factor tends to be the heatsink temperatures. Operating outside the de-rating curves will cause the heatsink temperature to increase and may cause the drive to trip on O.ht2.

If the auto-switching frequency change is enabled (Pr 5.35 = 0 [by default]), the drive will automatically decrease the switching frequency when the heatsink temperature rises above pre-determined levels to reduce the heatsink temperature. When the drive switches down the switching frequency, the drives display will flash 'hot'.


NOTE

It is important that these de-rating curves are observed.

2.1 Size A

2.1.1 **Derating curves**

Figure 2-1 VARIDYNE 2 Size A 0.25kW derating curve

18 VARIDYNE 2 Technical Data

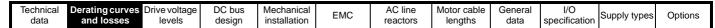


Figure 2-2 VARIDYNE 2 Size A 0.37kW derating curve

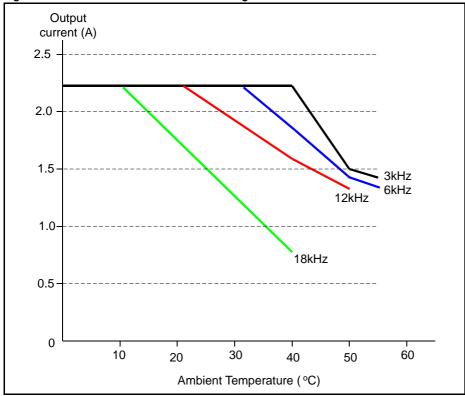
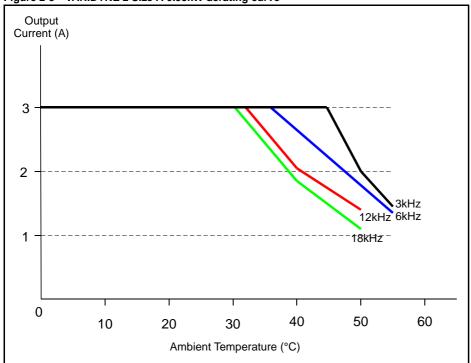
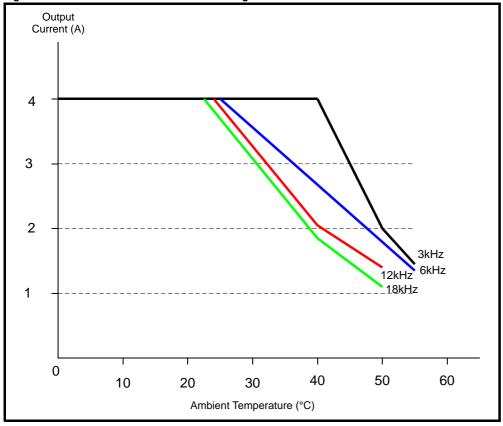




Figure 2-3 VARIDYNE 2 Size A 0.55kW derating curve

	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	0-4
ı	data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	Supply types	Options

Figure 2-4 VARIDYNE 2 Size A 0.75kW derating curve

2.1.2 **Drive losses**

The following tables indicate the total drive losses at the de-rating curve points.

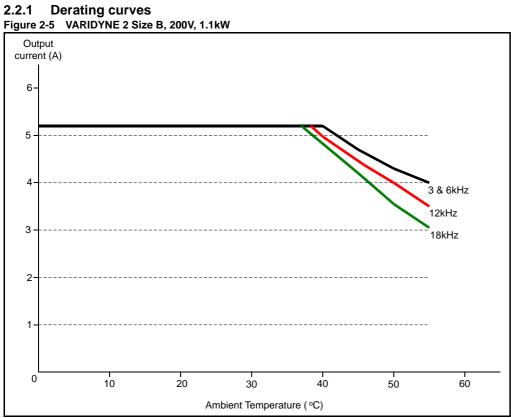
Table 2-1 VARIDYNE 2 size A 0.25kW losses

Ambient Temperature (°C)	Loss (W)							
Ambient Temperature (C)	3kHz	6kHz	12kHz	18kHz				
30	30	32	36	35				
40	30	32	38	30				
50	29	31	34					
55	29	30						

Table 2-2 VARIDYNE 2 size A 0.37kW losses

Ambient Temperature (°C)	Loss (W)						
Ambient Temperature (6)	3kHz	6kHz	12kHz	18kHz			
30	34	36	38	35			
40	34	33	38	30			
50	29	31	34				
55	29	30					

Table 2-3 VARIDYNE 2 size A 0.55kW losses


Ambient Temperature (°C)	Loss (W)						
Ambient Temperature (0)	3kHz	6kHz	12kHz	18kHz			
30	42	46	53	61			
40	42	43	44	47			
50	35	36	37	38			
55	31	33					

20 VARIDYNE 2 Technical Data www.usmotors.com

Table 2-4 VARIDYNE 2 size A 0.75kW losses

Ambient Temperature (°C)	Loss (W)							
Ambient Temperature (C)	3kHz	6kHz	12kHz	18kHz				
30	48	50	59	62				
40	48	43	44	47				
50	35	36	37	38				
55	31	33						

Size B 2.2

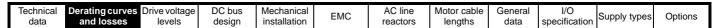
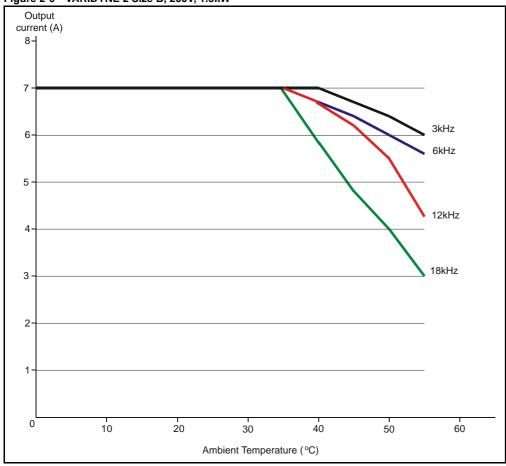
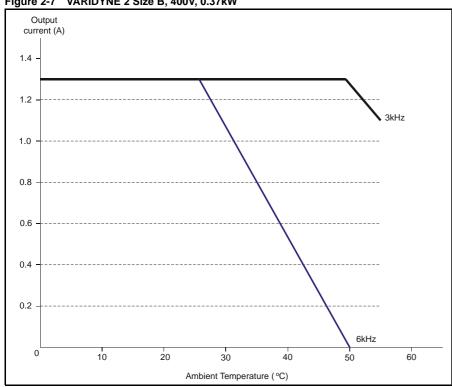




Figure 2-6 VARIDYNE 2 Size B, 200V, 1.5kW

With the 0.37, 0.55 & 0.75kW drives, no 12kHz derating information is shown on the graphs. This is because the losses at 12kHz is too great to run the drive continuously. Depending on the duty cycle etc. it is still possible to run the drive at 12kHz but if the heatsink gets too hot, the drive will automatically switch down the switching frequency to 6kHz. When the drive does this, the display will flash 'hot' to indicate that the drive has automatically switched down the switching frequency.

Figure 2-7 VARIDYNE 2 Size B, 400V, 0.37kW

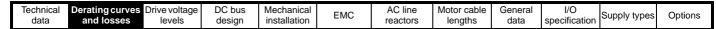
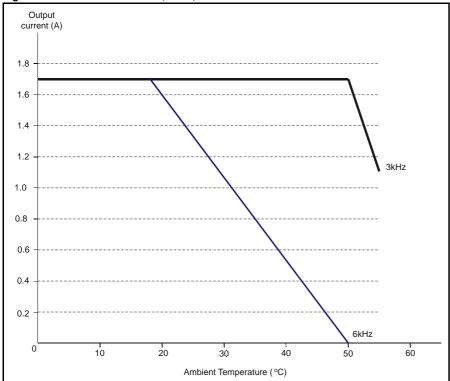




Figure 2-8 VARIDYNE 2 Size B, 400V, 0.55kW

VARIDYNE 2 Size B, 400V, 0.75kW Figure 2-9

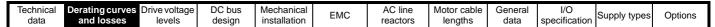


Figure 2-10 VARIDYNE 2 Size B, 400V, 1.1kW

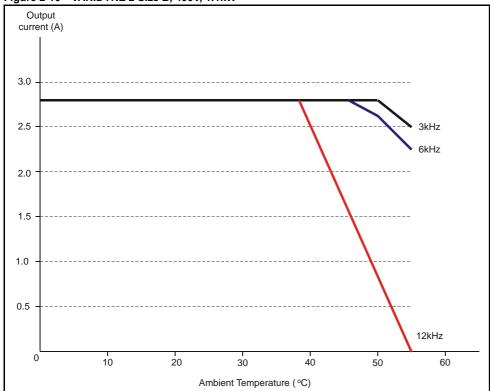



Figure 2-11 VARIDYNE 2 Size B, 400V, 1.5kW

Technical data	Derating curves and losses	Drive voltage levels	DC bus design	Mechanical installation	EMC	AC line reactors	Motor cable lengths	General data	I/O specification	Supply types	Options
----------------	-------------------------------	----------------------	------------------	-------------------------	-----	------------------	---------------------	-----------------	----------------------	--------------	---------

2.2.2 Drive losses

The following tables indicate the total drive losses at the de-rating curve points.

Table 2-5 VARIDYNE 2 Size B, 200V, 1.1kW

Ambient Temperature (°C)	Loss (W)						
Ambient Temperature (C)	3kHz	6kHz	12kHz	18kHz			
30	58	63	73	84			
40	58	63	70	78			
50	51	55	60	62			
55	48	51	54	57			

Table 2-6 VARIDYNE 2 Size B, 200V, 1.5kW

Ambient Temperature (°C)	Loss (W)					
Ambient Temperature (C)	3kHz	6kHz	12kHz	18kHz		
30	72	79	85	92		
40	72	76	82	80		
50	66	69	71	59		
55	63	65	57	50		

Table 2-7 VARIDYNE 2 Size B, 400V, 0.37kW

Ambient Temperature (°C)	Loss (W)				
Ambient remperature (0)	3kHz	6kHz	12kHz		
30	24	27			
40	24	21			
50	24				
55	22				

Table 2-8 VARIDYNE 2 Size B, 400V, 0.55kW

Ambient Temperature (°C)	Loss (W)				
Ambient Temperature (C)	3kHz	6kHz	12kHz		
30	27	26			
40	27	21			
50	27				
55	22				

Table 2-9 VARIDYNE 2 Size B, 400V, 0.75kW

Ambient Temperature (°C)	Loss (W)					
Ambient Temperature (0)	3kHz	6kHz	12kHz			
30	31	27				
40	31	21				
50	26					
55	22					

Table 2-10 VARIDYNE 2 Size B, 400V, 1.1kW

Ambient Temperature (°C)	Loss (W)				
Ambient Temperature (C)	3kHz	6kHz	12kHz		
30	43	51	68		
40	43	51	62		
50	43	49	35		
55	40	44			

Table 2-11 VARIDYNE 2 Size B, 400V, 1.5kW

Ambient Temperature (°C)		Loss (W)	
Ambient Temperature (C)	3kHz	6kHz	12kHz
30	53	65	87
40	53	65	76
50	49	55	55
55	46	51	45

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Cumply troppe	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	Supply types	Options

Size C 2.3

2.3.1 Derating curves Table 2-12 VARIDYNE 2 Size C, 200V, 2.2kW

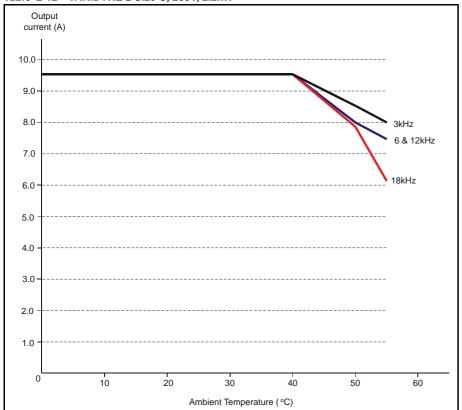
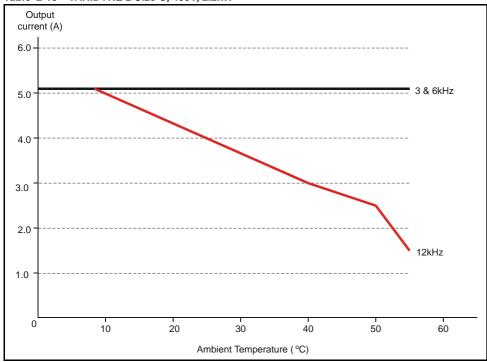



Table 2-13 VARIDYNE 2 Size C, 400V, 2.2kW

26

Table 2-14 VARIDYNE 2 Size C, 400V, 3.0kW

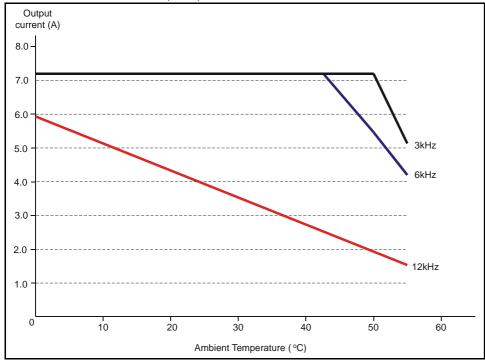
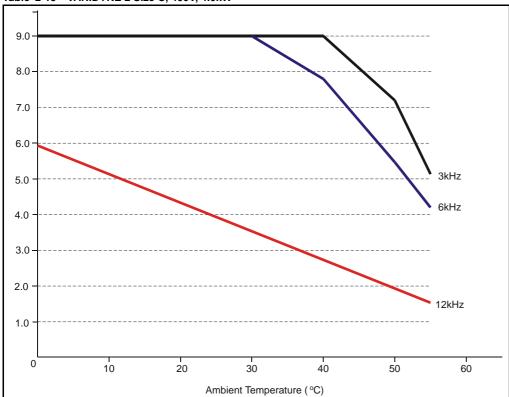



Table 2-15 VARIDYNE 2 Size C, 400V, 4.0kW

	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Cupply types	Ontions
ı	data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.3.2 Drive losses

Table 2-16 VARIDYNE 2 Size C, 200V, 2.2kW

Ambient Temperature (°C)	Loss (W)					
Ambient Temperature (C)	3kHz	6kHz	12kHz	18kHz		
30	93	107	133	158		
40	93	107	133	158		
50	84	93	115	133		
55	80	88	109	111		

Table 2-17 VARIDYNE 2 Size C, 400V, 2.2kW

Ambient Temperature (°C)	Loss (W)			
Ambient Temperature (C)	3kHz	6kHz	12kHz	
30	78	108	118	
40	78	108	101	
50	78	108	88	
55	78	108	60	

Table 2-18 VARIDYNE 2 Size C, 400V, 3.0kW

Ambient Temperature (°C)	Loss (W)				
Ambient Temperature (C)	3kHz	6kHz	12kHz		
30	91	117	93		
40	91	117	78		
50	91	94	62		
55	70	77	47		

Table 2-19 VARIDYNE 2 Size C, 400V, 4.0kW

Ambient Temperature (°C)		Loss (W)	
Ambient Temperature (C)	3kHz	6kHz	12kHz
30	116	149	99
40	116	132	84
50	96	100	69
55	75	83	54

Size 2 2.4

2.4.1

Power and current ratings (derating for switching frequency and temperature)

Table 2-20 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

Table 2-20	WIAXIIII	um pen	IIISSIDIE COI	iitiiiuous c	atput curre	int @ 40	7 (104	1) allible	it ioi waii	mounted d
			Normal I	Duty				Heavy D	Outy	
Model		ninal ing	current (A	n continuo A) @ each frequency	switching		ninal ing	current (A	n continuo A) @ each s frequency	witching
	kW	hp	3kHz	6kHz	12kHz	KW	hp	3kHz	6kHz	12kHz
VFK2201	4.0	5.0		15.5		3.0	3.0		12.6	
VFK2202	5.5	7.5		22.0		4.0	5.0		17.0	
VFK2203	7.5	10	28	.0	24.8	5.5	7.5	25.0 24.2		19.6
VFK2401	7.5	10	15	.3	12.7	5.5	10	13	3.0	9.6
VFK2402	11	15	21.0	19.5	12.7	7.5	10	16.5	14.9	9.6
VFK2403	15	20	29.0	23.2	15.0	11	20	25.0	19.9	12.8
VFK2404*	15	20	29.0	26.6	16.5	15	20	29.0	20.5	12.1

28 VARIDYNE 2 Technical Data

Technical	Derating curves		DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses	levels	design	installation	Livio	reactors	lengths	data	specification	Cupply typoo	Optiono

Table 2-21 Maximum permissible continuous output current @ 40°C (104°F) ambient with IP54 insert and standard fan fitted

			Norm	al Duty				Heavy	Duty		
Model	Nom rati			m continuo (A) @ each frequency	switching	Nom rati		cur	n continuou rent (A) @ e ching freque	ach .	
	kW	hp	3kHz	6kHz	12kHz	KW	hp	3kHz	6kHz	12kHz	
VFK2201	4.0	5.0		15.5		3.0	3.0				
VFK2202	5.5	7.5	22	2.0	18.0	4.0	5.0		17.0		
VFK2203	7.5	10	24.5	22.0	17.9	5.5	7.5	24.2	21.8	17.7	
VFK2401	7.5	10	15	5.3	10.1	5.5	10	1	13.0	9.4	
VFK2402	11	15	20.1	15.6	10.1	7.5	10	16.5	14.9	9.3	
VFK2403	15	20	21.7	16.4	10.2	11	20	21.6	16.4	10.2	
VFK2404*	15	20	20.1	14.0	7.3	15	20	20.1	14.0	7.3	

^{*} See section *** VFK2404 Power and current ratings on page 12.

Table 2-22 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

			Norma	Duty				Heavy D	Outy	
Model	Nom rati			n continuo A) @ each : frequency	•	Nom rati		curr	continuou ent (A) @ e hing frequ	each
	kW	hp	3kHz	6kHz	12kHz	KW	hp	3kHz	6kHz	12kHz
VFK2201	4.0	5.0	15.5	13.5	3.0	3.0		12.6		
VFK2202	5.5	7.5	19.7	17.3	13.5	4.0	5.0	17.0		13.4
VFK2203	7.5	10	19.5	17.2	13.4	5.5	7.5	19.2	17.0	13.3
VFK2401	7.5	10	15.3	11.8	7.3	5.5	10	13.0	11.7	7.3
VFK2402	11	15	15.7	11.8	7.3	7.5	10	15.5	11.7	7.3
VFK2403	15	20	16.8	12.2	7.1	11	20	16.7	12.2	7.1
VFK2404*	15	20	22.3	15.8	8.6	15	20	22.3	14.0	7.3

^{*} See section *** VFK2404 Power and current ratings on page 12.

For the definition of ambient temperature, see section 5.4.4 Cubicle design and drive ambient temperature on page 63.

2.4.2 **Drive losses**

Table 2-23 Losses @ 40°C (104°F) ambient for wall mounted drives

	Driv	e losse	s (W) taking	into consid	deration ar	ny curre	ent dera	ting for the	given co	nditions
			Normal	Duty				Heavy D	uty	
Model		ninal ing	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
	kW	hp				kW	hp			
VFK2201	4.0	5.0	155	173	210	3.0	3.0	133	150	182
VFK2202	5.5	7.5	210	234	282	4.0	5.0	170	190	229
VFK2203	7.5	10	272	302	320	5.5	7.5	245	263	259
VFK2401	7.5	10	186	234	283	5.5	10	164	206	229
VFK2402	11	15	248	291	283	7.5	10	201	230	229
VFK2403	15	20	313	320	315	11	20	272	279	279
VFK2404	15	20	311 376		15	20	311	301	302	

For the definition of ambient temperature, see section 5.4.4 Cubicle design and drive ambient temperature on page 63.

Technical	Derating curves			Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses	levels	design	installation	LIVIC	reactors	lengths	data	specification	Supply types	Options

Table 2-24 Losses @ 40°C (104°F) ambient with IP54 insert and standard fan fitted

	Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
			Normal	Duty				Heavy D	uty	
Model		ninal ing	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
	kW	hp				kW	hp			
VFK2201	4.0	5.0	155	173	210	3.0	3.0	133	150	182
VFK2202	5.5	7.5	210	234	237	4.0	5.0	170	190	229
VFK2203	7.5	10		237	•	5.5	7.5		237	•
VFK2401	7.5	10	186	234	237	5.5	10	164	206	226
VFK2402	11	15		237	•	7.5	10	201	230	224
VFK2403	15	20	237			11	20	237		
VFK2404	15	20	225			15	20		225	

Table 2-25 Losses @ 50°C (122°F) ambient for wall mounted drives

	Driv	e losse	s (W) taking	j into consi	deration a	ny curre	ent dera	ting for the	given co	nditions
			Normal	Duty				Heavy D	uty	
Model	_	ninal ing	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
	kW	hp				kW	hp			
VFK2201	4.0	5.0	155	173	190	3.0	3.0	133	150	182
VFK2202	5.5	7.5		190		4.0	5.0	170	190	•
VFK2203	7.5	10		190		5.5	7.5	190		
VFK2401	7.5	10	186	19	90	5.5	10	164 190		90
VFK2402	11	15		190			10		190	
VFK2403	15	20	190			11	20	190		
VFK2404	15	20		245			20		245	

2.5 Size 3

2.5.1 Power and current ratings (derating for switching frequency and temperature)

Table 2-26 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

			Normal I	Duty				Heavy D	Outy	
Model		ninal ing	current (A	n continuo A) @ each frequency	switching		ninal ing	current (A	n continuo A) @ each s frequency	switching
	kW	hp	3kHz	6kHz	12kHz	KW	hp	3kHz	6kHz	12kHz
VFK3201	11	15		42.0		7.5	10	31.0		
VFK3202	15	20	54	.0	48.5	11	15	42	2.0	41.3
VFK3401	18.5	25	35.0		26.3	15	25	32.0		22.0
VFK3402	22	30	43	.0	28.6	18.5	30	40.0	38.3	24.5
VFK3403	30	40	56.0	44.6	28.6	22	30	46.0	38.3	24.4
VFK3501	3.0	3.0	5.	4		2.2	2.0	4.1		
VFK3502	4.0	5.0	6.	1		3.0	3.0	5	.4	
VFK3503	5.5	7.5	8.	4		4.0	5.0	6	.1	
VFK3504	7.5	10	11.0			5.5	7.5	9	.5	
VFK3505	7.5	10	11.0			5.5	7.5	9	.5	
VFK3506	15	20	22.0 18.2			11	15	18.0		
VFK3507	18.5	25	27.0 21.6			15	20	22.0	18.4	

30 VARIDYNE 2 Technical Data www.usmotors.com

Technical	Derating curves		DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses	levels	design	installation	Livio	reactors	lengths	data	specification	Cupply typoo	Optiono

Table 2-27 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

			Normal I	Duty				Heavy D	Outy	
Model		ninal ing	current (A	n continuo A) @ each frequency	switching		ninal ing		n continuo A) @ each s frequency	witching
	kW	hp	3kHz	6kHz	12kHz	KW	hp	3kHz	6kHz	12kHz
VFK3201	11	15	42	.0	38.2	7.5	10	31.0		
VFK3202	15	20	54.0	52.8	38.2	11	15	42.0		37.2
VFK3401	18.5	25	35.0	33.5	21.5	15	25	32.0	30.7	19.7
VFK3402	22	30	43.0	34.2	21.0	18.5	30	40.0	40.0 34.1	
VFK3403	30	40	46.0	34.2	21.0	22	30	46.0	33.6	20.8
VFK3501	3.0	3.0	5.4	4		2.2	2.0	4	.1	
VFK3502	4.0	5.0	6.	1		3.0	3.0	5.4		
VFK3503	5.5	7.5	8.	4		4.0	5.0	6.1		
VFK3504	7.5	10	11.	11.0 5.5		5.5	7.5	9.5		
VFK3505	7.5	10	16.0 5.5 7.5 12.0		2.0					
VFK3506	15	20	22.0 17.8			11	15	18.0	16.8	
VFK3507	18.5	25	24.6	17.8		15	20	22.0	22.0 16.7	

NOTE

For the definition of ambient temperature, see section 5.4.4 Cubicle design and drive ambient temperature on page 63.

2.5.2 **Drive losses**

Table 2-28 Losses @ 40°C (104°F) ambient for wall mounted drives

	Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
			Normal	Duty				Heavy D	uty	
Model		ninal ing	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
	kW	hp				kW	hp			
VFK3201	11	15	331	380	477	7.5	10	260	297	370
VFK3202	15	20	431	492	551	11	15	349	398	486
VFK3401	18.5	25	364	449	477	15	25	337	415	408
VFK3402	22	30	437	540	514	18.5	30	411	485	452
VFK3403	30	40	567	552	510	22	30	474	485	452
VFK3501	3.0	3.0	127	168		2.2	2.0	112	148	
VFK3502	4.0	5.0	135	180		3.0	3.0	127	168	
VFK3503	5.5	7.5	163	218		4.0	5.0	135	180	
VFK3504	7.5	10	197	263		5.5	7.5	178	237	
VFK3505	7.5	10	267	354		5.5	7.5	212	281	
VFK3506	15	20	362	475		11	15	300	396	
VFK3507	18.5	25	448	477		15	20	365	406	

For the definition of ambient temperature, see section 5.4.4 *Cubicle design and drive ambient temperature* on page 63.

Г	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Sunnly types	Ontions
	data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

Table 2-29 Losses @ 50°C (122°F) ambient for wall mounted drives

	Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
			Normal	Duty				Heavy D	uty	
Model		ninal ing	3kHz	6kHz	12kHz		ninal ing	3kHz	6kHz	12kHz
	kW	hp				kW	hp			
VFK3201	11	15	331	380	436	7.5	10	260	297	370
VFK3202	15	20	431	480	439	11	15	349	398	439
VFK3401	18.5	25	364	430	399	15	25	337	399	373
VFK3402	22	30	437	435	399	18.5	30	411	435	396
VFK3403	30	40	474	429	397	22	30	474	429	397
VFK3501	3.0	3.0	127	168		2.2	2.0	112	148	
VFK3502	4.0	5.0	135	180		3.0	3.0	127	168	
VFK3503	5.5	7.5	163	218		4.0	5.0	135	180	
VFK3504	7.5	10	197	263		5.5	7.5	178	237	
VFK3505	7.5	10	267	354		5.5	7.5	212	281	
VFK3506	15	20	362	390		11	15	300	372	
VFK3507	18.5	25	405	390		15	20	365	369	

2.6 Size 4

Power and current ratings (derating for switching frequency and temperature) 2.6.1

Table 2-30 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

			Norm Duty					Heav Duty	•	
Model	_	ninal ing	current (A		ous output switching /		ninal ing	current (A	n continuo A) @ each s frequency	witching
	kW	hp	3kHz	6kHz	12kHz	KW	hp	3kHz	6kHz	12kHz
VFK4201	18.5	25	68	68.0		15	20	56.0		
VFK4202	22	30	80	.0		18.5	25	68	3.0	
VFK4203	30	40	104			22	30	80	0.0	
VFK4401	37	50	68.0			30	50	60.0	51.9	
VFK4402	45	60	83.0	74.0		37	60	74.0	50.9	
VFK4403	55	75	104	95.1		45	75	96.0	66.6	
VFK4601	18.5	25	22	.0		15	20	19	9.0	
VFK4602	22	30	27	.0		18.5	25	22	2.0	
VFK4603	30	40	36.0			22	30	27	7.0	
VFK4604	37	50	43.0 41.3			30	40	36	3.0	
VFK4605	45	60	52.0 41.2			37	50	43.0	41.3	
VFK4606	55	75	62.0 48.4			45	60	52.0	44.7	

32 VARIDYNE 2 Technical Data Issue Number: 5

Technical	Derating curves		DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses	levels	design	installation	Livio	reactors	lengths	data	specification	Cupply typoo	Optiono

Table 2-31 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

			Normal I	Duty				Heavy D	Outy	
Model		ninal ing	current (A	n continuo A) @ each frequency	switching		ninal ing		n continuo A) @ each s frequency	witching
	kW	hp	3kHz	6kHz	12kHz	KW	hp	3kHz	6kHz	12kHz
VFK4201	18.5	25	68	.0		15	20	56	6.0	
VFK4202	22	30	80.0			18.5	25	68.0		
VFK4203	30	40	87.4			22	30	80	0.0	
VFK4401	37	50	68.0 66.8			30	50	60.0	46.7	
VFK4402	45	60	83.0	66.5		37	60	68.2	46.0	
VFK4403	55	75	86.5	71.3		45	75	86.5	60.1	
VFK4601	18.5	25	22	.0		15	20	19	9.0	
VFK4602	22	30	27	.0		18.5	25	22	2.0	
VFK4603	30	40	36.0 30.7			22	30	27	7.0	
VFK4604	37	50	43.0 30.7			30	40	36.0	30.7	
VFK4605	45	60	45.6 30.7			37	50	43.0	30.7	
VFK4606	55	75	51.9 34.7			45	60	51.9	34.7	

NOTE

For the definition of ambient temperature, see section 5.4.4 Cubicle design and drive ambient temperature on page 63.

2.6.2 Drive losses

Table 2-32 Losses @ 40°C (104°F) ambient for wall mounted drives

	Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
			Normal	Duty				Heavy D	uty	
Model		ninal ing	3kHz	6kHz	12kHz	-	ninal ing	3kHz	6kHz	12kHz
	kW	hp				kW	hp			
VFK4201	18.5	25	517	589		15	20	428	488	
VFK4202	22	30	611	694		18.5	25	517	589	
VFK4203	30	40	810	916		22	30	611	694	
VFK4401	37	50	714	914		30	50	629	704	
VFK4402	45	60	882	995		37	60	780	690	
VFK4403	55	75	1070	1217		45	75	976	854	
VFK4601	18.5	25	409	590		15	20	360	519	
VFK4602	22	30	496	712		18.5	25	409	590	
VFK4603	30	40	660	941		22	30	496	712	
VFK4604	37	50	798	1083		30	40	660	941	
VFK4605	45	60	985	1080		37	50	798	1083	
VFK4606	55	75	1060	1130		45	60	873	1042	

NOTE

For the definition of ambient temperature, see section 5.4.4 Cubicle design and drive ambient temperature on page 63.

ı	Technical	Derating curves	Drive voltage	DC bus	Mechanical		AC line	Motor cable	General	I/O		
	roommoar	Dorating our voc	Bill o Vollago	D 0 000	Wiodilariidai	EMC	710 11110	Wictor Gabio	Conorai	., 0	Supply types	Options
	data	and losses	levels	desian	installation	LIVIC	reactors	lenaths	data	specification	Supply types	Options
	aata	and losses	10 4 013	acsign	motanation		1 Cactors	icriguis	data	Specification		

Table 2-33 Losses @ 50°C (122°F) ambient for wall mounted drives

	Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions
			Normal	Duty				Heavy D	uty	
Model		ninal ing	3kHz	6kHz	12kHz	_	ninal ing	3kHz	6kHz	12kHz
	kW	hp			,	kW	hp			
VFK4201	18.5	25	517	589		15	20	428	488	
VFK4202	22	30	611	694		18.5	25	517	589	
VFK4203	30	40	671	761		22	30	611	694	
VFK4401	37	50	714	898		30	50	629	638	
VFK4402	45	60	882	894		37	60	716	629	
VFK4403	55	75	877	912		45	75	876	775	
VFK4601	18.5	25	409	590		15	20	360	519	
VFK4602	22	30	496	712		18.5	25	409	590	
VFK4603	30	40	660	805		22	30	496	712	
VFK4604	37	50	798	805		30	40	660	805	
VFK4605	45	60	850	805		37	50	798	805	
VFK4606	55	75	871	816		45	60	871	816	

2.7 Size 5

2.7.1 Power and current ratings (derating for switching frequency and temperature)

Table 2-34 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

			Normal I	Outy				Heavy D	Outy	
Model		ninal ing	current (A	continuo (A) @ each : frequency	switching		ninal	Maximum current (A		
	kW	hp			12kHz	KW	hp	3kHz	6kHz	12kHz
VFK5401	75	100	138	118		55	100	124	82.4	
VFK5402	90	125	168	129		75	125	156	109	
VFK5601	75	100	84			55	75	63		
VFK5602	90	125	99			75	100	85		

Table 2-35 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

			Normal I	Duty				Heavy D	Outy	
Model		ninal ing	current (A	n continuo A) @ each frequency	switching		ninal ting	current (A	n continuo A) @ each s frequency	witching
	kW	hp	3kHz 6kHz 12kHz		KW	hp	3kHz	6kHz	12kHz	
VFK5401	75	100	138	105.9		55	100	112.7	74.5	
VFK5402	90	125	141	141 112		75	125	140	99.0	
VFK5601	75	100				55	75			
VFK5602	90	125				75	100			

For the definition of ambient temperature, see section 5.4.4 Cubicle design and drive ambient temperature on page 63.

34 VARIDYNE 2 Technical Data www.usmotors.com

	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
ı	data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	Supply types	Options

2.7.2 Drive losses

Table 2-36 Losses @ 40°C (104°F) ambient for wall mounted drives

	Driv	e losse	s (W) taking	into consi	deration ar	ny curre	ent dera	ting for the	given co	nditions		
			Normal	Duty		Heavy Duty						
Model	Nominal rating		3kHz	3kHz 6kHz	12kHz	Nominal rating	3kHz	6kHz	12kHz			
	kW	hp				kW	hp					
VFK5401	75	100	1471	1640		55	100	1311	1150			
VFK5402	90	125	1830	1781		75	125	1681	1508			
VFK5601	75	100				55	75					
VFK5602	90	125				75	100					

NOTE

For the definition of ambient temperature, see section 5.4.4 Cubicle design and drive ambient temperature on page 63.

Table 2-37 Losses @ 50°C (122°F) ambient for wall mounted drives

	Driv	Drive losses (W) taking into consideration any current derating for the given conditions										
			Normal	Duty		Heavy Duty						
Model	Nominal rating		-				6kHz 12kHz	Nominal rating		3kHz	6kHz	12kHz
	kW	hp				kW	hp			<u> </u>		
VFK5401	75	100	1471	1462		55	100	1186	1047			
VFK5402	90	125	1500	1543		75	125	1500	1366			
VFK5601	75	100				55	75					
VFK5602	90	125				75	100					

2.8 Size 6

2.8.1 Power and current ratings (derating for switching frequency and temperature)

Table 2-38 Maximum permissible continuous output current @ 40°C (104°F) ambient for wall mounted drives

			Normal I	Outy		Heavy Duty						
Model		ninal ing	current (A	Maximum continuous output current (A) @ each switching frequency				Maximum continuous output current (A) @ each switching frequency				
	kW	hp	3kHz	6kHz	12kHz	KW	hp	3kHz	6kHz	12kHz		
VFK6401	110	150	202	164.1		90	150	180	134.5			
VFK6402	132	200	236	157.7		110	150	210	129.7			
VFK6601	110	150	125			90	125	100				
VFK6602	132	175	144			110	150	125				

Table 2-39 Maximum permissible continuous output current @ 50°C (122°F) ambient for wall mounted drives

			Normal I	Duty		Heavy Duty						
Model		ninal ing	current (A	n continuo A) @ each frequency	switching	Nominal rating		Maximum continuous outpu current (A) @ each switching frequency				
	kW	hp	3kHz	6kHz	12kHz	KW	hp	3kHz	6kHz	12kHz		
VFK6401	110	150	191.5	147.6		90	150	180	121.5			
VFK6402	132	200	198.4	138.1		110	150	190	116.2			
VFK6601	110	150				90	125					
VFK6602	132	175				110	150					

NOTE

For the definition of ambient temperature, see section 5.4.4 Cubicle design and drive ambient temperature on page 63.

Technical	Derating curves			Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Options
data	and losses	levels	design	installation	20	reactors	lengths	data	specification	ouppi, typoo	0 1101.10

2.8.2 **Drive losses**

Table 2-40 Losses @ 40°C (104°F) ambient for wall mounted drives

	Driv	Drive losses (W) taking into consideration any current derating for the given conditions									
			Normal	Duty		Heavy Duty					
Model	Nominal rating						ninal ing	3kHz	6kHz	12kHz	
	kW	hp			ĺ	kW	hp				
VFK6401	110	150	2058	2153		90	150	1817	1772		
VFK6402	132	200	2477	2255		110	150	2192	1888		
VFK6601	110	150				90	125				
VFK6602	132	175				110	150				

NOTE

For the definition of ambient temperature, see section 5.4.4 Cubicle design and drive ambient temperature on page 63.

Table 2-41 Losses @ 50°C (122°F) ambient for wall mounted drives

	Driv	Drive losses (W) taking into consideration any current derating for the given conditions										
			Normal	Duty		Heavy Duty						
Model	Nominal rating				6kHz 12kHz	Nominal rating		3kHz	6kHz	12kHz		
	kW	hp				kW	hp					
VFK6401	110	150	1942	1939		90	150	1817	1610			
VFK6402	132	200	2068	1997		110	150	1979	1715			
VFK6601	110	150				90	125					
VFK6602	132	175				110	150					

For through-panel mounting losses see Table 5-3 on page 53.

Derating with glanding box and Cover kit (size A to C only) 2.9

Table 2-42 Size A derating with glanding box and Cover kit fitted to drive

Model	Output current
VFKA1200037	1.7A
VFKA1200055	2.2A
VFKA1200075	3.0A

For sizes B and C there is no derating due to forced ventilation from fan.

36 VARIDYNE 2 Technical Data www.usmotors.com

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply types	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	Supply types	Options

3 **Drive voltage levels**

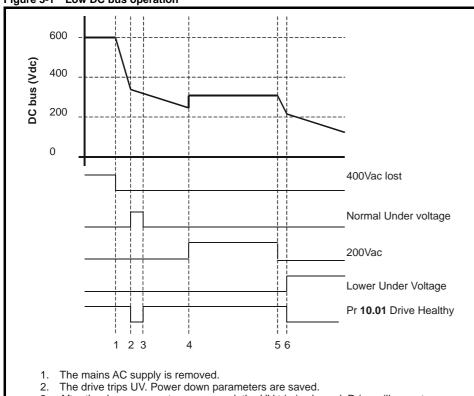
Condition	110V drives	200V drives	400V drives	575V drives	690V drives
OV trip level	415 Vdc	415 Vdc	830 Vdc	990 Vdc	1190 Vdc
Braking level	390 Vdc	390 Vdc	780 Vdc	930 Vdc	1120Vdc
Rated upper level (AC mains +10% x 1.4142)	373 Vdc	373 Vdc	747 Vdc	895 Vdc	1073 Vdc
Rated lower level (AC mains -10% x 1.4142)	255 Vdc	255 Vdc	484 Vdc	636 Vdc	636 Vdc
*UV reset level	215 Vdc	215 Vdc	425 Vdc	590 Vdc	590 Vdc
UV trip level	175 Vdc	175 Vdc	330 Vdc	435 Vdc	435 Vdc
Standard ramp voltage	375 Vdc	375 Vdc	Eur: 750 Vdc USA: 775 Vdc	895 Vdc	1075 Vdc

^{*} These are the absolute minimum DC voltages that the drive can be supplied with. If the drive is not supplied with at least this voltage, it will not reset out of a UV trip at power up.

Output frequency: 0 to 1500Hz

Output voltage: 3 phase, 0 to drive rating (240, 480, 575 or 690 Vac maximum set by Pr 08).

Low DC bus operation (Pr 6.10)


- Low DC bus operation disabled
- 1 Low DC bus operation enabled

The Low DC bus operation is designed to enable 3 phase 400VAC (medium voltage) VARIDYNE 2's to be run off a single phase 200VAC (low voltage) supply in the event of a primary 400VAC supply failure.

When the primary supply fails, the back up supply can be switched in. This will allow the drive to control the motor at a reduced power, for example to move an elevator up or down to the next floor.

There is no de-rating as such when low DC bus operation is enabled however the power will be limited by the reduced voltage and ripple generated on the DC bus of the drive.

Figure 3-1 Low DC bus operation

- After the down parameters are saved, the UV trip is cleared. Drive will operate normally with the lower UV level set.
- Back-up AC supply is applied
- Back-up AC supply is removed
- Drive trips UV. Power down parameters are not saved.

Note: If the DC voltage is greater than 425Vdc after 3, the UV level will return to normal.

This function is only available on sizes B and C.

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General FMC Supply types Options and losses installation reactors lengths specification data design data levels

When Pr 6.10 is enabled and the DC bus voltage is less than 330VDC, the drives display will flash LoAC (Low AC) to indicate that it is running off the low voltage back up supply.

This mode is designed for use with a backup power supply and not for using a 400VAC (medium voltage) VARIDYNE 2 in a 200VAC (low voltage) application. As shown in the above diagram, the drives power down save parameters are saved at point 2. If the drive was to be used on a 200VAC supply, the DC bus will never fall through point 2 and power down save parameters will not be saved.

Low DC bus operation voltage levels (Pr 6.10 enabled)

>425Vdc - normal operation <330Vdc - LoAC operation <230Vdc - UV trip

3.1 Input voltage

Single phase 3.1.1

100V to 120V ±10%

48Hz to 62Hz

200V to 240V ±10%

48Hz to 62Hz

3.1.2 Three phase 200V

200V to 240V ±10%

48Hz to 62Hz (48Hz to 65Hz for size 2 to 6)

Phase imbalance 3% (between phases) or 2% negative phase sequence (IEC 146-1-1 Immunity class C)

3.1.3 Three phase 400V

380V to 480V ±10%

48Hz to 62Hz (48Hz to 65Hz for size 2 to 6)

Phase imbalance 3% (between phases) or 2% negative phase sequence (IEC 146-1-1 Immunity class C)

It is possible to run the drives on lower supply voltages than those specified above (up to -20%) but only with de-rating of the product. Running a 400V product on a 230V single phase supply (at a very much reduced output power) is possible on frame sizes B & C.

Three phase 575V

500V to 575V ±10%

48Hz to 65Hz

3.1.5 Three phase 690V

500V to 690V ±10%

48Hz to 65Hz

On products without a DC bus choke (up to 4kW), the maximum supply capacity connected to the drive without using external line chokes will be 5kA short circuit current.

Detailing the maximum output capability for Unidrive SP when supplied from a single phase power source.

3.2 Single phase ratings (size 2 and 3)

See Table 3-1 for the single phase supply capability of VARIDYNE 2.

The supply should be connected between L1 and L2.

The single phase supply should have the same RMS voltage as the line to line RMS voltage that the drive is designed for. Minimum and maximum voltages are the same as for 3 phase operation.

With a single-phase supply the drive power rating is considerably reduced in comparison with the normal case. The output current capability is not reduced. There are two possible modes of operation:

1. Motor matched to the drive power capability. In this case the motor can deliver its full rated torque at any speed up to base speed, but

- this is less than the drive capability at reduced speed. Table 3-1 shows the power and current ratings for a suitable motor.
- 2. Motor run with restricted power. In this case the motor may have any current rating up to the normal output current rating of the drive. The available torque will be reduced at higher speeds in order to avoid exceeding the power restriction. Table 3-1 shows the power ratings for a suitable motor. The current rating should be selected to suit the required maximum torque at low speed.

The current and power ratings given are for continuous operation.

A PH trip would result if the limits are exceeded.

Continuous operation at output currents above the values given will result in the drive tripping OHT3.

Drive rated output power is given for 220V, 400V and 525V supplies.

Values have been derived from extensive calculations and take into account capacitor ripple current and life time, rectifier peak and RMS current and supply RMS current.

Supply fuses and cable sizes need to be the same value as specified for the drive operating with a 3 phase supply at normal rated power. This is because with a single phase supply the RMS supply current is much greater for the same output power.

There is no further derating due to switching frequency as it is the input stage and DC bus components which derate the drive.

Table 3-1 Single phase ratings (size 2 and 3)

Drive type	Corresponding motor rated current (A)	Drive rated output power (kW)	
VFK2201	11.6	3.5	
VFK2202	11.6	3.5	
VFK2203	11.6	3.5	
VFK3201	28.4	8.5	
VFK3202	28.4	8.5	
VFK2401	6.6	3.4	
VFK2402	6.6	3.4	
VFK2403	6.6	3.4	
VFK3401	11.4	5.9	
VFK3402	11.4	5.9	
VFK3403	11.4	5.9	
VFK3501	5.4	3.7	
VFK3502	6.1	4.2	
VFK3503	8.4	5.7	
VFK3504	K3504 11.0		
VFK3505	12.0	0 8.2	
VFK3506	12.0	8.2	
VFK3507	12.0	8.2	

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

DC bus design 4

VARIDYNE 2 size A to C 4.1

Table 4-1 VARIDYNE 2 200V units DC bus data

Model	DC Bus Capacitance μF	DC bus inductance mH	Inrush resistance at 25°C Ω	Peak inrush current A
VFKA1200025	330		22	17.0
VFKA1200037	390		22	17.0
VFKA1200055	660		22	17.0
VFKA1200075	780		22	17.0
VFKBD200110	940		13.6	27.4
VFKBD200150	1410		13.6	27.4
VFKCD200220	1880		20.4	18.3

Table 4-2 VARIDYNE 2 400V units DC bus data

Model	DC Bus Capacitance μF	DC bus inductance mH	Inrush resistance at 25°C Ω	Peak inrush current A
VFKB3400037	165		44	17.0
VFKB3400055	165		44	17.0
VFKB3400075	165		44	17.0
VFKB3400110	195		44	17.0
VFKB3400150	235		44	17.0
VFKC3400220	470		66	11.3
VFKC3400300	470		66	11.3
VFKC3400400	470		66	11.3

4.2 VARIDYNE 2 size 2 to 6

Table 4-3 VARIDYNE 2 size 2 DC bus data

Model	DC Bus Capacitance μF	DC Bus Inductance mH	Peak inrush current A
VFK2201	2820	1.4	
VFK2202	2820	1.4	12
VFK2203	2820	1.4	
VFK2401	705	1.4	
VFK2402	705	1.4	24
VFK2403	705	1.4	24
VFK2404	705	1.4	

Table 4-4 VARIDYNE 2 Size 3 DC bus data

	DC Bus Capacitance	DC Bus Inductance	Peak inrush current
Model	μF	mH	A
	μι	11111	^
VFK3201	5400	0.7	8
VFK3202	5400	0.7	O
VFK3401	1350	0.7	
VFK3402	1350	0.7	14
VFK3403	1350	0.7	
VFK3501	1000	4	
VFK3502	1000	4	
VFK3503	1000	4	
VFK3504	1000	4	18
VFK3505	1000	4	
VFK3506	1000	4	
VFK3507	1000	4	

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Table 4-5 VARIDYNE 2 size 4 DC bus data

Model	DC Bus Capacitance μF	DC Bus Inductance mH	Peak inrush current A
VFK4201	4400	0.211	
VFK4202	4400	0.211	73
VFK4203	4400	0.211	
VFK4401	1100	0.85	37
VFK4402	2200	0.423	73
VFK4403	2200	0.423	73
VFK4601	733	1.27	
VFK4602	733	1.27	
VFK4603	733	1.27	35
VFK4604	733	1.27	33
VFK4605	733	1.27	
VFK4606	733	1.27	

VARIDYNE 2 size 5 and 6 use AC line chokes instead of DC bus chokes

Table 4-6 VARIDYNE 2 size 5 DC bus data

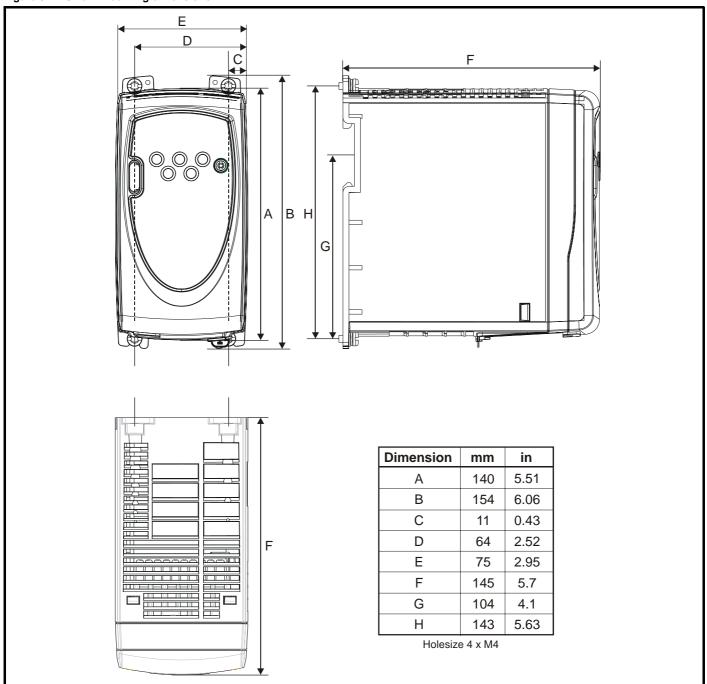
Model	DC Bus Capacitance μF	AC line Inductance per phase (mH)	Peak inrush current A
VFK5401	3300	0.150	110
VFK5402	3300	0.150	110
VFK5601	1467	0.470	70
VFK5602	1467	0.470	70

Table 4-7 VARIDYNE 2 size 6 DC bus data

Model	DC Bus Capacitance μF	AC line Inductance per phase (mH)	Peak inrush current A
VFK6401	4400	0.054	
VFK6402	5500	0.054	
VFK6601	2200	0.313	
VFK6602	2200	0.313	

NOTE

The inrush current for all drives after a brown-out can be larger than the power-up inrush.


Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

5 Mechanical installation

5.1 VARIDYNE 2 size A to C

5.1.1 Mechanical dimensions

Figure 5-1 Size A mounting dimensions

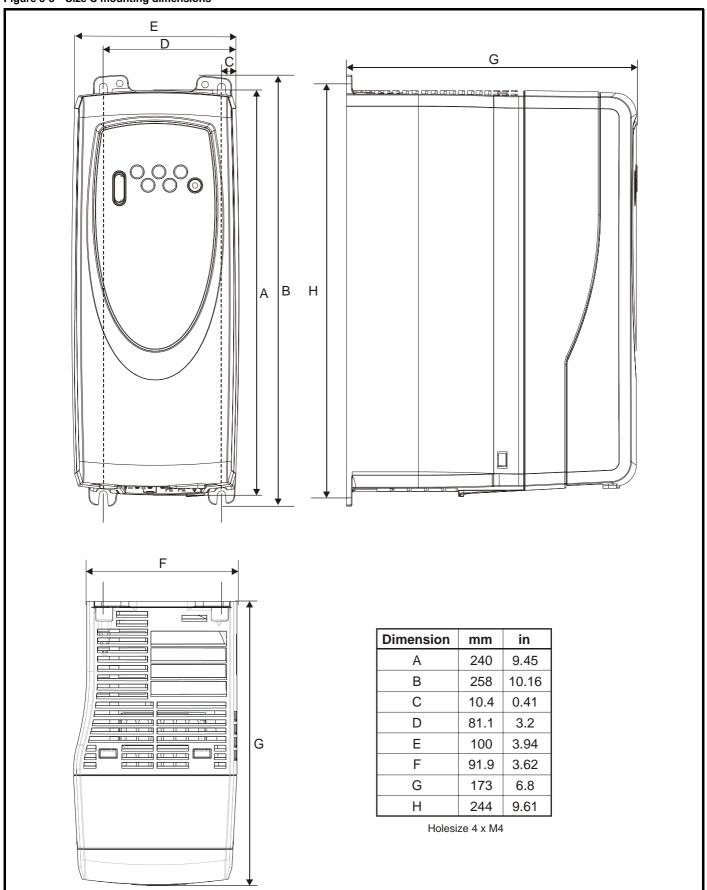


NOTE

If DIN rail mounting is used in an installation where the drive is to be subjected to shock or vibration, it is recommended that the bottom mounting screws are used to secure the drive to the back plate. If the installation is going to be subjected to heavy shock and vibration, then it is recommended that the drive is surface mounted rather than DIN rail mounted

Derating curves and losses Supply types DC bus I/O Technical Drive voltage Mechanical installation AC line Motor cable General EMC Options data levels design reactors lengths data specification

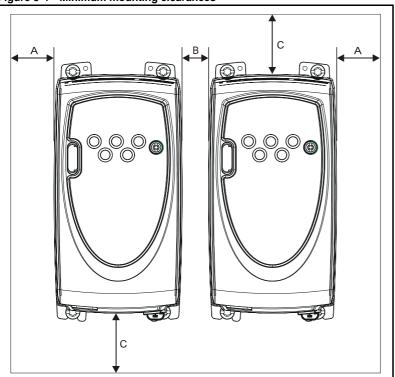
Figure 5-2 Size B mounting dimensions



NOTE

If DIN rail mounting is used in an installation where the drive is to be subjected to shock or vibration, it is recommended that the bottom mounting screws are used to secure the drive to the back plate. If the installation is going to be subjected to heavy shock and vibration, then it is recommended that the drive is surface mounted rather than DIN rail mounted

Derating curves Drive voltage and losses levels DC bus design I/O specification Supply types Technical AC line Mechanical installation Motor cable General EMC Options data levels reactors lengths data


Figure 5-3 Size C mounting dimensions

Size C is not DIN rail mountable.

1	Technical	Derating curves	Drive voltage	DC bus	Mechanical	LMC	AC line	Motor cable	General	I/O	Supply	Ontions
ı	data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

5.1.2 Minimum mounting clearances Figure 5-4 Minimum mounting clearances

Drive size	Α		E	3	С		
Dilve size	mm	in	mm	in	mm	in	
Α			0	0			
B (≤0.75kW)	10	0.39	10*	0.39*	100	3.94	
B (≥1.1kW)	10	0.59	0	0	100	3.94	
С			50*	1.97*			

^{*}This is the minimum spacing between drives measured at the base of the drives where it is mounted against a back plate/flat surface.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

5.2 VARIDYNE 2 size 2 to 6

5.2.1 Mounting methods

The VARIDYNE 2 size 2 to 6 can be either surface or through-panel mounted using the appropriate brackets.

The following drawings show the dimensions of the drive and mounting holes for each method to allow the back plate to be prepared.

If the drive has been used at high load levels for a period of time, the heatsink can reach temperatures in excess of 70° C (158°F). Human contact with the heatsink should be prevented.

Surface mounting

Figure 5-5 Surface mounting the size 2 drive

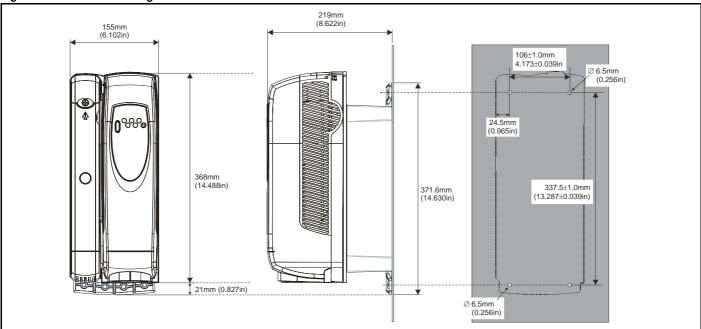
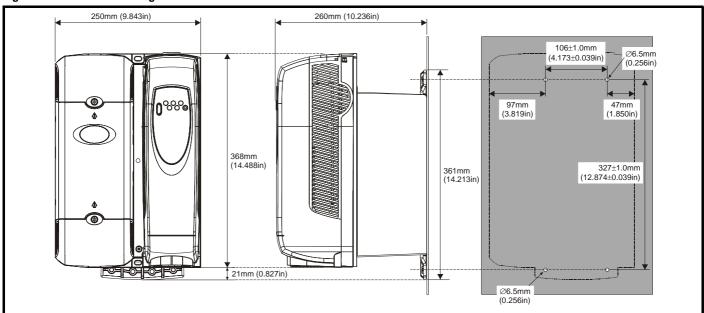



Figure 5-6 Surface mounting the size 3 drive

Derating curves and losses Supply types Drive voltage DC bus AC line I/O Technical Mechanical installation Motor cable General EMC Options data levels design reactors lengths data specification

Figure 5-7 Surface mounting the size 4 drive

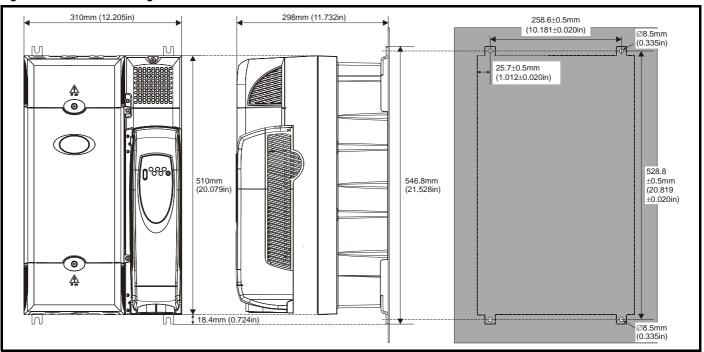
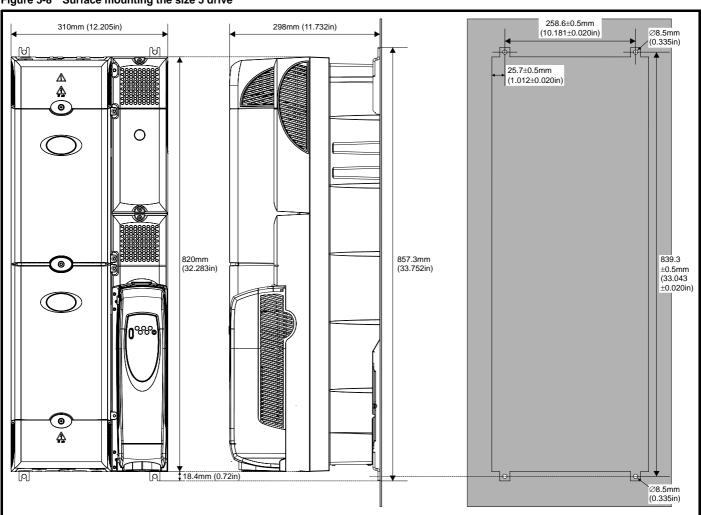
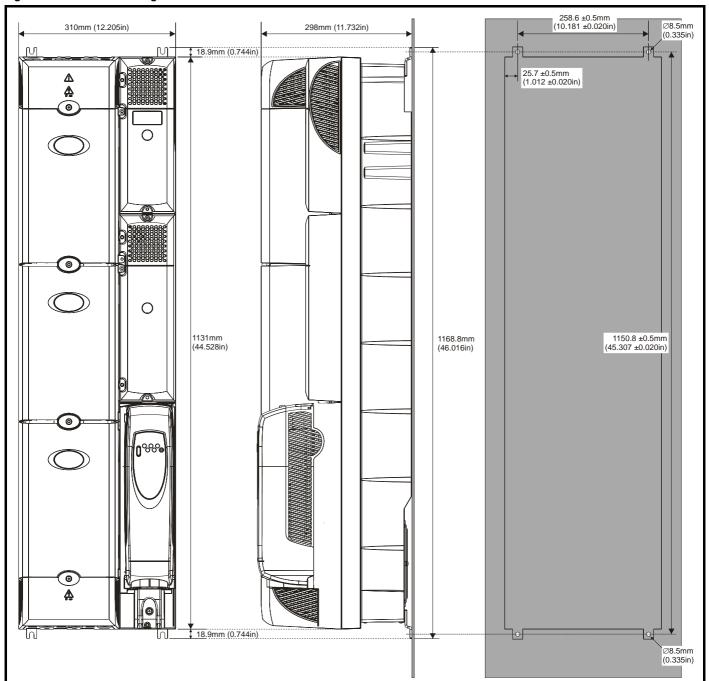




Figure 5-8 Surface mounting the size 5 drive

Derating curves Drive voltage and losses levels Mechanical installation Supply types Technical DC bus AC line Motor cable I/O General EMC Options data design reactors lengths data specification

Figure 5-9 Surface mounting the size 6 drive

Derating curves Drive voltage Supply types Technical DC bus Mechanical installation AC line Motor cable General I/O EMC Options data and losses levels design reactors lengths data specification

Through-panel mounting

When the drive is through-panel mounted, the main terminal cover(s) must be removed in order to provide access to the mounting holes. Once the drive has been mounted, the terminal cover(s) can be replaced.

Figure 5-10 Through-panel mounting of a size 2 drive

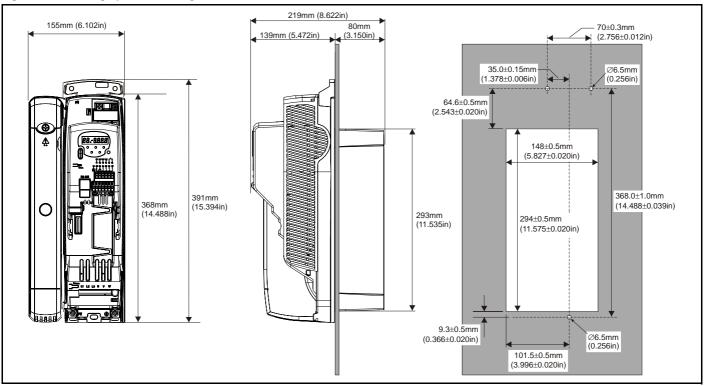
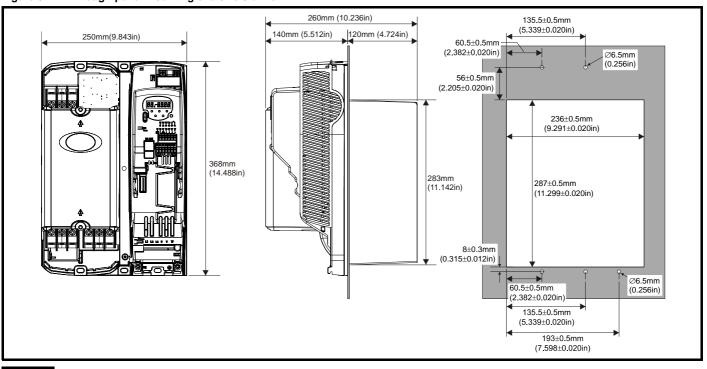
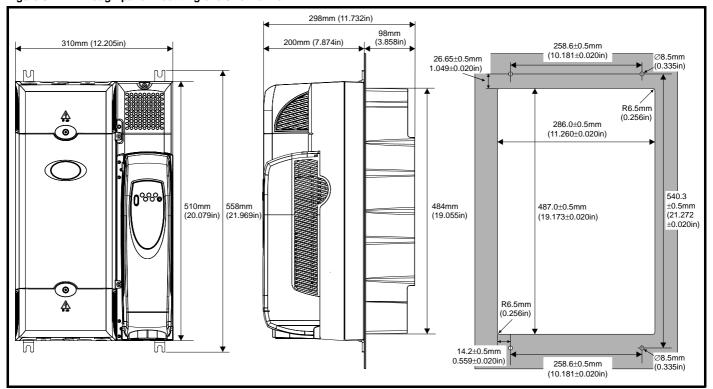



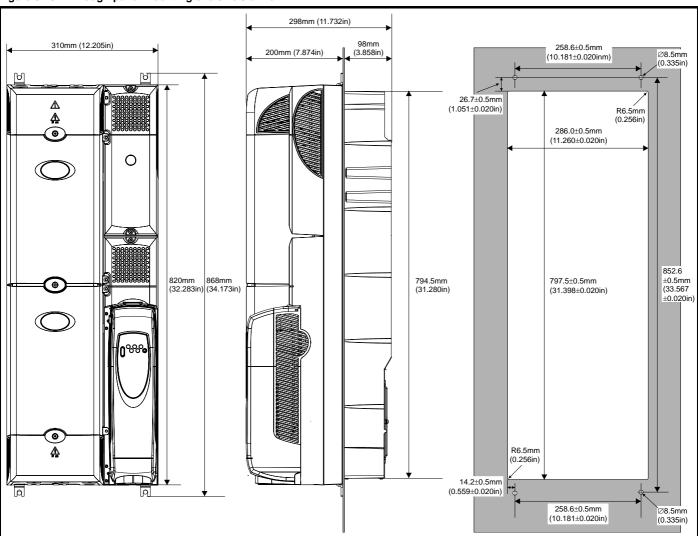
Figure 5-11 Through-panel mounting of a size 3 drive


NOTE

The control terminal cover must be removed on VARIDYNE 2 sizes 2 and 3 to allow access to the mounting holes for through panel mounting.

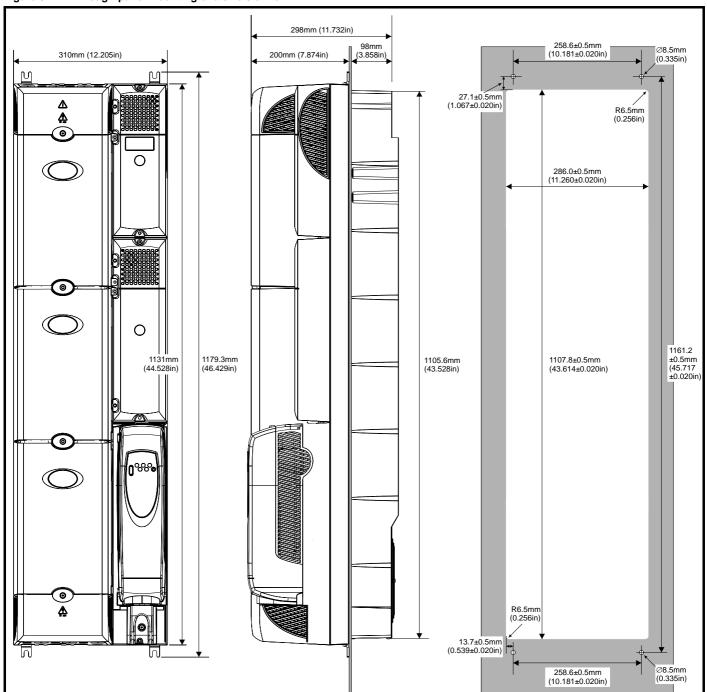
48 VARIDYNE 2 Technical Data www.usmotors.com

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options


Figure 5-12 Through-panel mounting of a size 4 drive

When a VARIDYNE 2 size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. This is required to provide a grounding point for the grounding bracket. See section Grounding hardware on page 81 for details.

1	Technical	Derating curves	Drive voltage	DC bus	Mechanical	LMC	AC line	Motor cable	General	I/O	Supply	Ontions
	data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options


Figure 5-13 Through-panel mounting of a size 5 drive

When a VARIDYNE 2 size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. This is required to provide a grounding point for the grounding bracket. See section Grounding hardware on page 81 for details.

Derating curves and losses Drive voltage DC bus Supply types Technical Mechanical installation AC line Motor cable General I/O EMC Options design data levels reactors lengths data specification

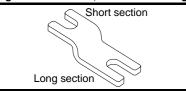
Figure 5-14 Through-panel mounting of a size 6 drive

NOTE

In order to achieve IP54 rating and/or NEMA 12 for through-panel mounting, an IP54 insert must be fitted (size 2) and the heatsink fan must be replaced with an IP54 rated fan (size 2 to 4). Additionally, the gasket provided should be fitted between the drive and the backplate to ensure a good seal for the cubicle. See section 5.2.3 *IP Rating (Ingress Protection)* on page 52

Technical Derating curves Drive voltage DC bus AC line Motor cable I/O Supply types General Mechanical EMC Options and losses design installation reactors lengths specification data levels data

5.2.2 Mounting brackets


Model size	Surface	Through-panel	Hole size
2	x2	x1	6.5mm
3	x2		(0.256in)
4		≫ x4	
		≫ x4	8.5mm (0.335in)
5 & 6	x2		

Fitting of the VARIDYNE 2 mounting brackets on size 4, 5 and 6

VARIDYNE 2 size 4,5 and 6 use the same mounting brackets for surface and through-panel mounting.

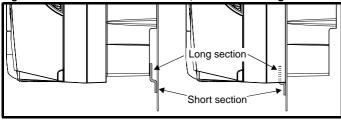

The mounting bracket has a long section and short section.

Figure 5-15 Size 4, 5 and 6 mounting bracket

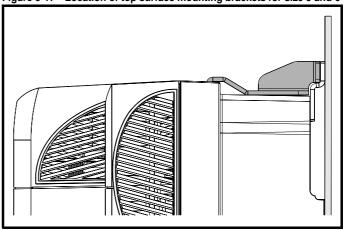
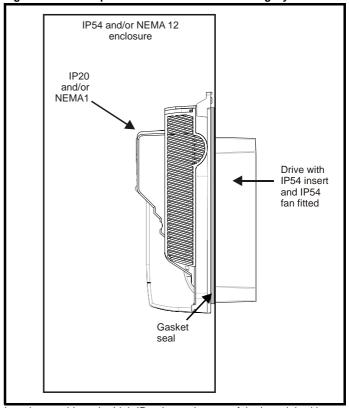

The mounting bracket must be fitted in the correct orientation with the long section inserted into or attached to the drive and the short section attached to the backplate. Figure 5-16 shows the orientation of the mounting bracket when the drive is surface mounted and through-panel mounted.

Figure 5-16 Orientation of the size 4, 5 and 6 mounting bracket

VARIDYNE 2 size 5 and 6 also requires two top mounting brackets when the drive is surface mounted. The two brackets should be fitted to the top of the drive as shown in Figure 5-17.

Figure 5-17 Location of top surface mounting brackets for size 5 and 6


The maximum torque setting for the screws into the drive chassis is 10Nm (7.4 lb ft).

5.2.3 IP Rating (Ingress Protection) VARIDYNE 2 size 2, 3 and 4

The VARIDYNE 2 size 2, 3 and 4 is rated to IP20 pollution degree 2 (dry, non-conductive contamination only) and/or NEMA 1. However, it is possible to configure the drive to achieve IP54 rating and/or NEMA 12 at the rear of the heatsink for through-panel mounting (some current derating is required for size 2).

This allows the front of the drive, along with various switchgear, to be housed in an IP54 and/or NEMA 12 enclosure with the heatsink protruding through the panel to the external environment. Thus, the majority of the heat generated by the drive is dissipated outside the enclosure maintaining a reduced temperature inside the enclosure. This also relies on a good seal being made between the heatsink and backplate using the gasket provided.

Figure 5-18 Example of IP54 and/or NEMA 12 rating layout

In order to achieve the high IP rating at the rear of the heatsink with VARIDYNE 2 size 2, it is necessary to seal a heatsink vent by fitting the IP54 insert as shown in Figure 5-19 on page 53.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

For increased fan lifetime in a dirty environment the heatsink fan must be replaced with an IP54 or IP55 fan.

Table 5-1 Fan part numbers

Frame size	IP54 fan part number	IP55 fan part number
2	3251-4824-00	3251-3824-00
3		3251-1224-00
4	3251-7824-00	

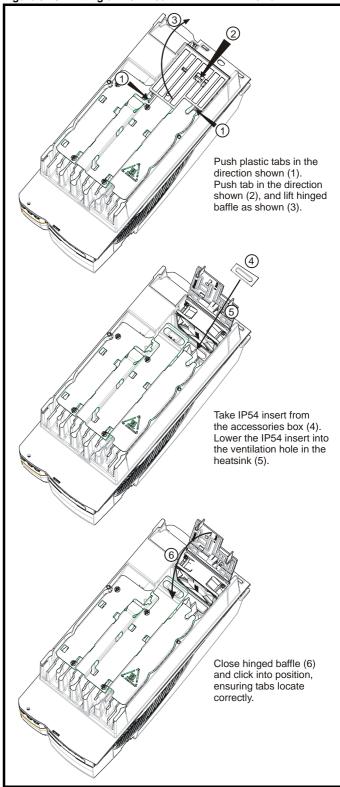
If the standard fan is used in a dirt/dusty environment, reduced fan lifetime will result. Regular cleaning of the fan and heatsink is recommended in this environment.

VARIDYNE 2 size 5 and 6

When through hole mounted, the VARIDYNE 2 size 5 and 6 are rated to IP54 and/or NEMA 12 as standard.

Table 5-2 Environmental considerations

Environment	IP54 Insert	Fan	Comments
Clean	Not fitted	Standard	
Dry and dusty (non-conductive)	Fitted	Standard	Regular cleaning recommended. Fan lifetime may be reduced.
Dry and dusty (conductive)	Fitted	Standard/ IP54	Regular cleaning recommended. Fan lifetime may be reduced.
IP54 compliance	Fitted	IP54	Regular cleaning recommended.

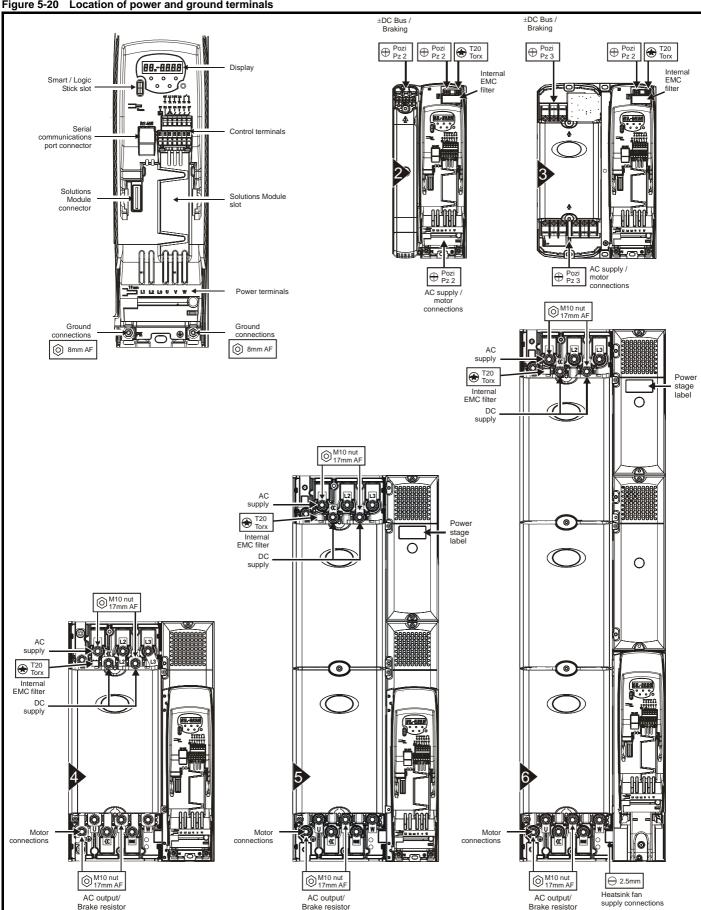

Through-panel mounting losses

When designing an IP54 and/or NEMA 12 cubicle, the losses from the front of the drive must be taken into consideration.

Table 5-3 Through-panel mounting losses

Frame size	Power loss (W)
2	≤75
3	≤100
4	≤204
5	≤347
6	≤480

Figure 5-19 Fitting of IP54 insert in VARIDYNE 2 size 2


In order to remove the IP54 insert, repeat steps (1) (2) and (3), reverse steps (5) and (4) and repeat step (6).

The IP54/55 fan can be fitted at the same time as the IP54 insert. The connector on the existing fan should be unplugged from the power PCB. The existing fan then unclips from the black housing and can be removed. Once the new assembly is complete, the power lead of the new IP5X fan can then be pushed back through the heatsink and the grommet inserted in to the hole to ensure the correct seal is maintained. The fan is then clipped into the housing ensuring the blades rotate freely indicating that the fan is fitted in the correct orientation.

Derating curves and losses Supply types Drive voltage Technical DC bus Mechanical installation AC line Motor cable General I/O **EMC** Options data levels design reactors lengths data specification

5.2.4 **Electrical terminals**

Figure 5-20 Location of power and ground terminals

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Terminal sizes and torque settings

To avoid a fire hazard and maintain validity of the UL Listing, adhere to the specified tightening torques for the power and ground terminals. Refer to the following tables.

Table 5-4 Drive control and relay terminal data

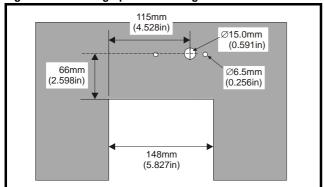
Model	Connection type
All	Spring terminals

Table 5-5 Drive power terminal data

Model size	AC terminals	DC and braking terminals	Ground terminals
2	Plug-in terminal block 1.5Nm (1.1 lb ft)	Terminal block (M5 screws) 1.5Nm (1.1 lb ft)	M5 stud 4.0Nm (2.9 lb ft)
3	Terminal block (1	6.0Nm (4.4 lb ft)	
4	М	10 stud	M10 stud 12Nm
5		15Nm	(8.8 lb ft)
6	(1	(3.3 15 17)	
	Torque tol	erance	±10%

5.2.5 Heatsink mounted braking resistor

If the drive has been used at high load levels for a period of time, the heatsink and heatsink mounted braking resistor can reach temperatures in excess of 70°C (158°F). Human contact with the heatsink and heatsink mounted braking resistor should be prevented.



To avoid the risk of fire when the drive is surface mounted with the braking resistor fitted, the back plate should be a non-flammable material.

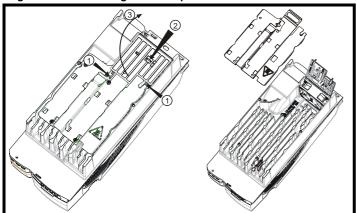
The VARIDYNE 2 size 2 has been designed with an optional space-saving heatsink mounted resistor. The resistor can be fitted within the heatsink fins of the drive. When the heatsink mounted resistor is used, an external thermal protection device is not required as the resistor is designed such that it will fail safely under fault conditions. The built-in software overload protection is set-up at default to protect the resistor. The resistor is rated to IP54 and/or NEMA 12.

If the drive is to be through-panel mounted with the heatsink mounted brake resistor fitted, then the aperture in the panel through which the drive is mounted must be modified as shown in Figure 5-21. This is in order to allow for the braking resistor cables and grommets.

Figure 5-21 Through-panel mounting cut out details for size 2

Resistor part number: 1220-2758-01

VARIDYNE 2 Technical Data
Issue Number: 5 www.usmotors.com


Each kit contains the following parts:

- · A braking resistor assembly
- A through-panel grommet
- A wire clip
- · An installation sheet

Technical Derating curves Drive voltage DC bus AC line Motor cable I/O Supply types General **EMC** Options data and losses design installation reactors lengths data specification levels

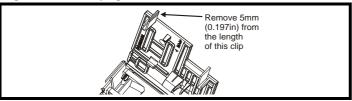

Size 2 braking resistor fitting instructions

Figure 5-22 Removing the baffle plate on a size 2

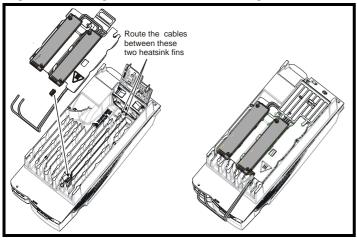

- Remove the DC cover as detailed in Menu 3 in the VARIDYNE 2 size 2 to 6 Getting Started Guide.
- Remove the 2 breakouts that line-up with the BR and +DC terminal connections as detailed in Menu 3 in the VARIDYNE 2 size 2 to 6 Getting Started Guide.
- Lift the hinged baffle plate by pushing the plastic tabs in the direction shown (1). Push tab in the direction shown (2), and lift the baffle as shown (3).
- Remove the baffle plate by removing the two screws. These two screws are no longer required.

Figure 5-23 Modifying the fan baffle on a size 2

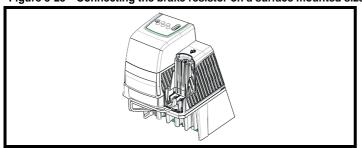
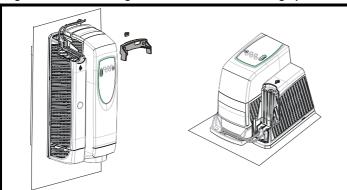

 Remove 5mm (0.197in) from the length of the clip on the plastic fan baffle.

Figure 5-24 Fitting the heatsink mounted braking resistor on a size 2

- Fit clip to heatsink in the position shown in diagram opposite.
 Route the long cables of the resistor assembly between the fins of the heatsink as shown in Figure 5-24.
- Fit the heatsink baffle plate in place with the cables routed underneath. Ensure the cables are not trapped between a heatsink fin and the baffle plate.
- Fit the braking resistors to the heatsink. The resistors are fitted with captive screws.
- The screws should be tightened to a maximum torque of 2.0 N m (1.5 lb ft).
- Close the hinged fan baffle.
- Fit cables to heatsink clip.


Figure 5-25 Connecting the brake resistor on a surface mounted size 2

- Fit the DC terminal cover grommets supplied in the accessory box with the drive, to the cables. To ensure a good seal, the grommets are a tight fit. Lubrication may be required to help fit the grommets to the cables.
- Terminate the cables with suitable crimps and connect to the BR and DC2 terminals.
- · Replace the terminal cover.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Figure 5-26 Connecting the brake resistor on a through-panel mounted size 2

- See Figure 5-21 for through-panel mounting cut-out details.
- Pass the cables through the hole in the panel and fit the hole grommet.
- Fit the mounting bracket.
- Fit the DC terminal cover grommets supplied in the accessory box with the drive, to the cables. To ensure a good seal, the grommets are a tight fit. Lubrication may be required to help fit the grommets to the cables
- Terminate the cables with suitable crimps and connect to the BR and DC2 terminals.
- Replace the terminal cover.

Braking resistor overload protection parameter settings Failure to observe the following information may damage the resistor.

The VARIDYNE 2 software contains an overload protection function for a braking resistor. On VARIDYNE 2 size 2 this function is enabled at default to protect the heatsink mounted resistor. Below are the parameter settings.

Parameter	200V drive	400V drive			
Full power braking time	0.09 0.02				
Full power braking period	Pr 10.31	2.0			

For more information on the braking resistor software overload protection, see the VARIDYNE 2 Advanced User Guide.

If the heatsink mounted braking resistor is to be used at more than half of its average power rating then the drive's cooling fan must be set to full speed by setting Pr 6.45 to On (1).

Braking resistor: High temperatures and overload protection

Braking resistors can reach high temperatures. Locate braking resistors so that damage cannot result. Use cable having insulation capable of withstanding the high temperatures.

It is essential that the braking resistor be protected against overload caused by a failure of the brake control. Unless the resistor has built in protection, the circuit below should be used, where the thermal protection device disconnects the AC supply to the drive.

Figure 5-27 Typical protection circuit for a braking resistor

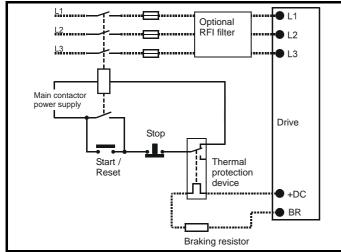


Table 5-6 Heatsink mounted braking resistor data

Parameter	Size 2
Part number	1220-2758-01
DC resistance at 25°C	37.5Ω
Peak instantaneous power over 1ms at nominal resistance	16kW
Average power over 60s*	100W
Ingress Protection (IP) rating	IP54
Maximum altitude	2000m

^{*} To keep the temperature of the resistor below 70°C (158°F) in a 30°C

(86°F) ambient, the average power rating is 100W for size 2. The previous parameter settings ensure this is the case.

VARIDYNE 2 size 3 and larger do not have heatsink mounted braking resistors, hence the default values of Pr **10.30** and Pr **10.31** are 0 (i.e. software braking resistor overload protection disabled).

Braking resistor software overload protection

The VARIDYNE 2 software contains an overload protection function for a braking resistor. In order to enable and set-up this function, it is necessary to enter two values into the drive:

- Resistor short-time overload time (Pr 10.30)
- Resistor minimum time between repeated short-time overloads (Pr 10.31)

This data should be obtained from the manufacturer of the braking resistors.

Pr 10.39 gives an indication of braking resistor temperature based on a simple thermal model. Zero indicates the resistor is close to ambient and 100% is the maximum temperature the resistor can withstand. A br.rS alarm is given if this parameter is above 75% and the braking IGBT is active. An It.br trip will occur if Pr 10.39 reaches 100%, when Pr 10.37 is set to 0 (default value) or 1.

If Pr 10.37 is equal to 2 or 3 an It.br trip will not occur when Pr 10.39 reaches 100%, but instead the braking IGBT will be disabled until Pr 10.39 falls below 95%. This option is intended for applications with parallel-connected DC buses where there are several resistors, each of which cannot withstand full DC bus voltage continuously. With this type of application it is unlikely the braking energy will be shared equally between the resistors because of voltage measurement tolerances within the individual drives. Therefore with Pr 10.37 set to 2 or 3, then as soon as a resistor has reached its maximum temperature the drive will disable the braking IGBT, and another resistor on another drive will take up the braking energy. Once Pr 10.39 has fallen below 95% the drive will

allow the braking IGBT to operate again.

See the *VARIDYNE 2 Advanced User Guide* for more information on Pr **10.30**, Pr **10.31**, Pr **10.37** and Pr **10.39**.

This software overload protection should be used in addition to an external overload protection device.

5.3 Sizing a braking resistor

The size and rating of the resistor are calculated with respect to the energy to be absorbed, the rate at which the power is delivered and the time between successive decelerations.

Kinetic energy of the motor and the driven machine = 0.5 J ω^2 Where:

 ω = angular velocity in radians s⁻¹

$$\omega = \frac{2\pi \times n}{60}$$

Where: n = motor speed in RPM

J = total moment of inertia (kg m²) of the motor and driven machine. If there is gearing between the motor and the machine, J is the value reflected at the motor shaft.

As energy is proportional to the square of the angular velocity, most of the energy is concentrated at the higher operating speeds. If the motor is operated above base speed, the power delivered to the resistor is constant until the speed falls below base speed.

Example

The information required to calculate the size of the braking resistor is as below:

Inertia J 2kg m²

Braking cycle 10 seconds in every 60

seconds

The first stage is to determine the maximum braking torque (M) available.

M = 150% x nominal motor torque

 $= 1.5 \times 26$

= 39Nm

Now calculate the minimum deceleration time possible to ensure that the time required is within specification.

$$\boldsymbol{\mathsf{M}} \,=\, \boldsymbol{\mathsf{J}} \times \boldsymbol{\alpha}$$

Where

 α = angular acceleration (rad / s²)

J = moment of inertia (kg m²)

 $\alpha = \frac{\omega}{\mathbf{t_b}}$

$$= \mathbf{J} \times \frac{\omega}{\mathbf{t_b}}$$

Where:

 ω = angular velocity (rad / s)

t h= minimum deceleration time (s)

$$\omega \; = \; \frac{\textbf{2} \times \pi \times \textbf{n}}{\textbf{60}}$$

n = motor speed RPM

$$= \frac{\mathbf{J} \times \mathbf{\pi} \times \mathbf{n}}{\mathbf{30} \times \mathbf{t_h}}$$

$$= \frac{2 \times \pi \times 1450}{30 \times t_b}$$

$$39 \,=\, \frac{2\times\pi\times1450}{30\times t_b}$$

$$t_b \,=\, \frac{2\times\pi\times1450}{30\times39}$$

$t_h = 7.8$ seconds

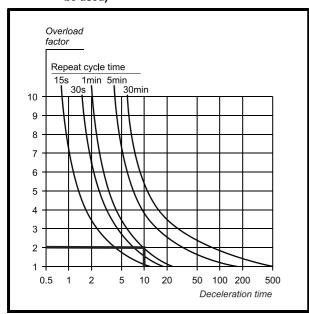
The minimum time for deceleration is 7.8 seconds. The required deceleration time is 10 seconds and is therefore within the specification for the drive.

Now using the required deceleration time of 10 seconds, calculate the required braking torque:

$$M_b = \frac{2 \times \pi \times 1450}{30 \times 10}$$

$$M_b = 30.4Nm$$

Now calculate the braking power:


$$P_b = \frac{M_b \times \pi \times n}{30 \times 10^3}$$

$$=\frac{30.4\times\pi\times1450}{30\times10^3}$$

Since braking occurs intermittently, the resistor can be rated for intermittent rather than continuous power dissipation so that the overload factor of the resistor can be used. This factor can be obtained from the cooling curves for resistor type that is being used. See the following example:

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Figure 5-28 Examples cooling curves for power resistors (in practice, refer to the cooling curves for the resistor to be used)

The cooling curve indicates that for a braking time of 10 seconds and a repeat cycle time of 60 seconds, the overall factor (F) is 2.0.

Calculate the required power rating of the resistor:

$$P_R = \frac{P_b}{F} = \frac{4.6 \times 10^3}{2.0} = 2.3 \text{kW}$$

Now calculate the value of the braking resistor:

$$R_{max} = \frac{(VR)^2}{P_b} = \frac{780^2}{4.6 \times 10^3} = 132\Omega$$

For this example use 120Ω which is the nearest value in the E12 range of resistors

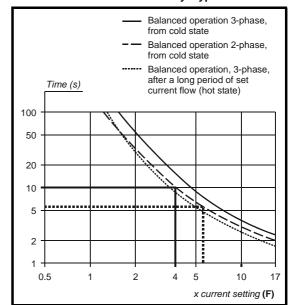
In practice, use a resistor having a preferred value close to and lower than the calculated value. This is because the calculated value would cause the braking transistor to be switched on almost continuously during braking. In this case, the drive will not have full control of the DC Bus voltage. A lower value of braking resistor will cause the braking transistor to act as a chopper which will then allow the drive to control the DC Bus voltage more accurately.

This reduction in value does not increase the power dissipation since the average voltage across the resistor is reduced by the braking transistor operating as a chopper.

Sizing an appropriate thermal overload relay

Calculate the maximum permissible continuous current through the braking resistor as follows:

$$I_{Rmax} = \sqrt{\frac{P_R}{R}} = \sqrt{\frac{2.3 \times 10^3}{120}} = 4.4A$$


Where:

P_R is the power rating of the resistor to be used.

R is the actual value of the braking resistor (not the calculated).

Use the tripping curves for the chosen manufacturer of thermal overload relay in order to find the overload factor (F) that will cause the relay to trip after 10 seconds.

Figure 5-29 Example tripping curves for the Telemecanique thermal overload relays type LR-Dx3xx

Calculate the current setting required for the thermal overload relay as

$$I_{SET} = \frac{I_{SET}}{F} = \frac{4.4}{4} = 1.1A$$

Select a model of thermal overload relay that can be set at 1.1A (e.g. Telemecanique LR2-D1306).

Calculate the maximum current that could flow through the resistor (e.g. due to the braking transistor becoming short circuit) as follows:

$$I_{Rpk} = \frac{V_R}{R} = \frac{780}{120} = 6.5A$$

Calculate the overload factor for this condition as follows:

$$F_{S/C} = \frac{I_{Rpk}}{I_{SET}} = \frac{6.5}{1.1} = 5.9$$

Use the tripping curves to find the time that the thermal overload relay will take to trip (e.g. 5 seconds approximately).

Check that the braking resistor can tolerate the overload current for this duration.

NOTE

Braking resistors must be installed equipped with a thermal overload device.

Resistors intended for braking duty should be capable of tolerating thermal shock. 'Pulse rated' resistors are recommended.

The resistance value calculated above does not take into account any tolerance in the resistance value.

The power ratings above are at the limit of satisfactory operation and thus a 10% safety factor should be built in to ensure any tolerances do not add up to cause overvoltage trips. This could be critical where inaccurate values are used for inertia etc. This safety factor should be increased where necessary to incorporate any sort of inaccuracy in values used.

59 **VARIDYNE 2 Technical Data** www.usmotors.com

Technical Derating curves Drive voltage DC bus AC line Motor cable I/O Supply General **EMC** Options data and losses design installation reactors lengths specification types levels data

5.4 Terminal sizes and torque settings

To avoid a fire hazard and maintain validity of the UL listing, adhere to the specified tightening torques for the power and ground terminals. Refer to the following tables.

Table 5-7 Drive control and relay terminal data

	,
Model	Connection type
All	Spring terminals

Table 5-8 Wall mounted drive power terminal data

Model size	AC terminals	DC and braking	Ground terminal
2	Plug-in terminal block 1.5 N m (1.1 lb ft)	Terminal block (M5 screws) 1.5 N m (1.1 lb ft)	Stud (M5) 4.0 N m 2.9 lb ft
3	Terminal block 2.5 N m	k (M6 screws) 1.8 lb ft	6.0 N m 4.4 lb ft
4	M10	stud	M10 stud
5		N m	12 N m
6	(11.1	(8.8 lb ft)	
	Torque tolera	±10%	

Table 5-9 Schaffner external EMC filter terminal data

CT part		wer ections	Ground connections		
number	Max cable size Max torque		Ground stud size	Max torque	
4200-6210	10mm ² 8AWG	2 N m (1.5 lb ft)	M5	3.5 N m (2.6 lb ft)	
4200-6305	40 2	2.2 N m		3.9 N m	
4200-6307	16mm ² 6AWG	(1.6 lb ft)	M6	(2.9 lb ft)	
4200-6309	OAWG	(1.0 15 11)		(2.5 15 11)	
4200-6406	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)	
4200-6408	25mm ² 4AWG	2.3 N m (1.7 lb ft)	M6	3.9 N m (2.9 lb ft)	
4200-6503	95mm ² 4/0AWG	20 N m (14.7 lb ft)	M10	25 N m (18.4 lb ft)	
4200-6504	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)	
4200-6603			M10	25 N m	
4200-6604			IVITO	(18.4 lb ft)	

Table 5-10 Epcos external EMC Filter terminal data

CT part		wer ctions	Ground connections		
number	Max cable size Max torque		Ground stud size	Max torque	
4200-6211	10mm ² 8AWG	1.35 N m (1.0 lb ft)	M5	3.0 N m (2.2 lb ft)	
4200-6306	16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	5.1 N m	
4200-6308	10mm ² 8AWG	1.35 N m (1.0 lb ft)	IVIO	(3.8 lb ft)	
4200-6405	50mm ²	6.8 N m			
4200-6407	0AWG	(5.0 lb ft)			
4200-6501	95mm ²	20 N m	M10	10 N m	
4200-6502	4/0AWG	(14.7 lb ft)	IVITO	(7.4 lb ft)	
4200-6601					
4200-6602					

5.4.1 Routine maintenance

The drive should be installed in a cool, clean, well ventilated location. Contact of moisture and dust with the drive should be prevented.

Regular checks of the following should be carried out to ensure drive / installation reliability are maximised:

Environment			
Ambient temperature	Ensure the enclosure temperature remains at or below maximum specified		
Dust	Ensure the drive remains dust free – check that the heatsink and drive fan are not gathering dust. The lifetime of the fan is reduced in dusty environments.		
Moisture	Ensure the drive enclosure shows no signs of condensation		
Enclosure			
Enclosure door filters	Ensure filters are not blocked and that air is free to flow		
Electrical			
Screw connections	Ensure all screw terminals remain tight		
Crimp terminals	Ensure all crimp terminals remains tight – check for any discolouration which could indicate overheating		
Cables	Check all cables for signs of damage		

5.4.2 Heatsink fan

Heatsink fan operation

The VARIDYNE 2 is ventilated by an internal heatsink mounted fan. The fan housing forms a baffle plate, channelling the air through the heatsink chamber. Thus, regardless of the mounting method (surface or throughpanel mounting), the fitting of additional baffle plates is not required.

Ensure the minimum clearances around the drive are maintained to allow air to flow freely.

The heatsink fan on VARIDYNE 2 size 2 is a dual speed fan and on size 3 to 6, it is a variable speed fan. The drive controls the speed at which the fan runs based on the temperature of the heatsink and the drive's thermal model system. The VARIDYNE 2 size 3 to 6 is also fitted with a single speed fan to ventilate the capacitor bank.

The heatsink fan on the VARIDYNE 2 size 2 to 5 is supplied internally by the drive. The heatsink fan on the size 6 requires an external +24Vdc power supply.

60 VARIDYNE 2 Technical Data www.usmotors.com

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Heatsink fan supply

The heatsink fan on size 6 requires an external +24Vdc supply. The connections for the heatsink fan supply must be made to the upper terminal connector near to the W phase output on the drive. See Figure 5-30 for the position of the heatsink fan supply connector.

Figure 5-30 Location of size 6 heatsink fan supply connections

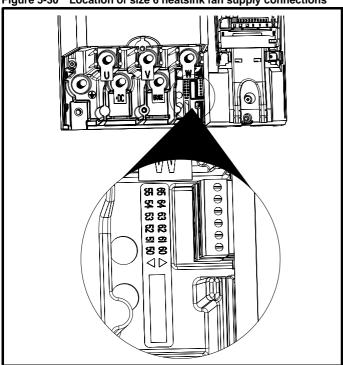
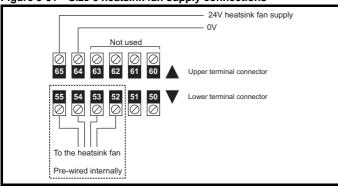



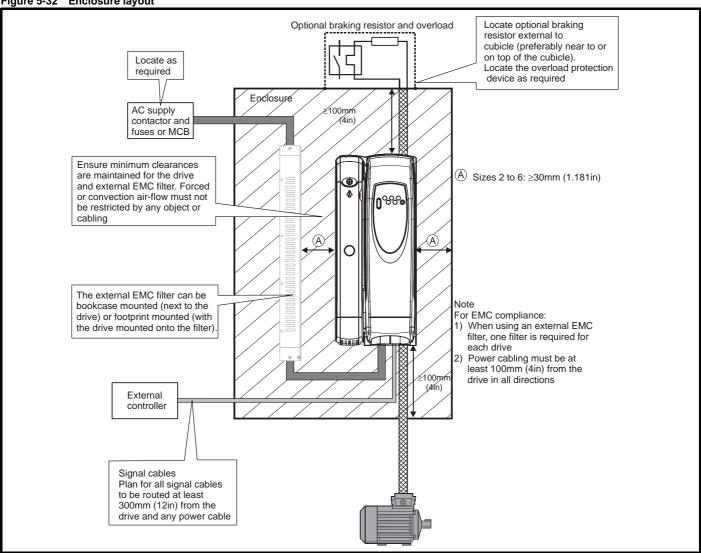
Figure 5-31 Size 6 heatsink fan supply connections

The heatsink fan supply requirements are as follows:

Nominal voltage: 24Vdc 23.5Vdc Minimum voltage: Maximum voltage: 27Vdc Current drawn: 3.3A

Recommended power supply: 24V, 100W, 4.5A

4A fast blow (I²t less than 20A²s) Recommended fuse:


Technical Derating curves Drive voltage DC bus AC line Motor cable I/O General Supply Mechanical EMC Options and losses design installation reactors lengths specification types data levels data

5.4.3 **Enclosure**

Enclosure layout (size 2 to 6)

Please observe the clearances in the diagram below taking into account any appropriate notes for other devices / auxiliary equipment when planning

Figure 5-32 Enclosure layout

Enclosure sizing

- 1. Add the dissipation figures from section 2.4.2 Drive losses on page 29 for each drive that is to be installed in the enclosure.
- If an external EMC filter is to be used with each drive, add the dissipation figures from Table 6-6 on page 69 for each external EMC filter that is to be installed in the enclosure.
- 3. If the braking resistor is to be mounted inside the enclosure, add the average power figures for each braking resistor that is to be installed in the enclosure.
- Calculate the total heat dissipation (in Watts) of any other equipment to be installed in the enclosure.
- Add the heat dissipation figures obtained above. This gives a figure in Watts for the total heat that will be dissipated inside the enclosure.

Calculating the size of a sealed enclosure

The enclosure transfers internally generated heat into the surrounding air by natural convection (or external forced air flow); the greater the surface area of the enclosure walls, the better is the dissipation capability. Only the surfaces of the enclosure that are unobstructed (not in contact with a wall or floor) can dissipate heat.

Calculate the minimum required unobstructed surface area A_e for the enclosure from:

$$A_{e} = \frac{P}{k(T_{int} - T_{ext})}$$

Where:

 A_{e} Unobstructed surface area in m^2 (1 m^2 = 10.9 ft^2)

Maximum expected temperature in ^oC outside the enclosure

Maximum permissible temperature in °C inside the Tint enclosure

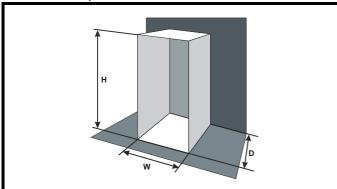
Power in Watts dissipated by all heat sources in the enclosure

Heat transmission coefficient of the enclosure material in W/m²/°C

Example

To calculate the size of an enclosure for the following:

- Two VFK2203 models operating at the Normal Duty rating
- Each drive operate at 6kHz PWM switching frequency
- Schaffner 32A (4200-6210) external EMC filter for each drive
- Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40°C
- Maximum ambient temperature outside the enclosure: 30°C


Losses in each drive: 302W (see section 2.4.2 *Drive losses* on page 29). Losses of each external EMC filter: 11W (max) (see section on page 68).

Total losses: 2 x (302 + 11) = 626W

The enclosure is to be made from painted 2 mm (0.079 in) sheet steel having a heat transmission coefficient of 5.5 $W/m^2/^{\circ}C$. Only the top, front, and two sides of the enclosure are free to dissipate heat.

The value of 5.5 W/m²/°C can generally be used with a sheet steel cubicle (exact values can be obtained by the supplier of the material). If in any doubt, allow for a greater margin in the temperature rise.

Figure 5-33 Enclosure having front, sides and top panels free to dissipate heat

Insert the following values:

T_{int} 40°C T_{ext} 30°C k 5.5 P 626 W

The minimum required heat conducting area is then:

$$A_{e} = \frac{626}{5.5(40-30)}$$

=11.38
$$m^2$$
 (124 ft^2) (1 m^2 = 10.9 ft^2)

Estimate two of the enclosure dimensions - the height (H) and depth (D), for instance. Calculate the width (W) from:

$$W \; = \; \frac{A_e - 2HD}{H + D}$$

Inserting $\mathbf{H} = 2m$ and $\mathbf{D} = 0.6m$, obtain the minimum width:

$$W = \frac{11.38 - (2 \times 2 \times 0.6)}{2 + 0.6}$$

If the enclosure is too large for the space available, it can be made smaller only by attending to one or all of the following:

- Using a lower PWM switching frequency to reduce the dissipation in the drives
- Reducing the ambient temperature outside the enclosure, and/or applying forced-air cooling to the outside of the enclosure
- · Reducing the number of drives in the enclosure
- · Removing other heat-generating equipment

Calculating the air-flow in a ventilated enclosure

The dimensions of the enclosure are required only for accommodating the equipment. The equipment is cooled by the forced air flow.

Calculate the minimum required volume of ventilating air from:

$$V = \frac{3kP}{T_{int} - T_{ext}}$$

Where:

 $\begin{array}{ll} \textbf{V} & \quad \text{Air-flow in m}^3 \text{ per hour (1 m}^3\text{/hr} = 0.59 \text{ ft}^3\text{/min)} \\ \textbf{T}_{\textbf{ext}} & \quad \text{Maximum expected temperature in °C } \textit{outside} \text{ the} \\ \end{array}$

T_{int} Maximum permissible temperature in °C *inside* the

P Power in Watts dissipated by all heat sources in the enclosure

k Ratio of $\frac{P_o}{P_I}$

Where:

Po is the air pressure at sea level

 $\mathbf{P_{I}}$ is the air pressure at the installation

Typically use a factor of 1.2 to 1.3, to allow also for pressure-drops in dirty air-filters.

Example

To calculate the size of an enclosure for the following:

- Three VFK3201 models operating at the Normal Duty rating
- Each drive to operate at 6kHz PWM switching frequency
- Schaffner 75A (4200-6307) external EMC filter for each drive
- Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40°C

Maximum ambient temperature outside the enclosure: 30°C

Losses of each external EMC filter: 29W (max)

Total losses: 3 x (380 + 29) = 1227W

Insert the following values:

Losses in each drive: 380W

T_{int} 40°C T_{ext} 30°C k 1.3 P 1227 W

Then:

$$V \; = \; \frac{3 \times 1.3 \times 1227}{40 - 30}$$

= 478.5 m^3/hr (282.3 ft^3/min) (1 m^3/hr = 0.59 ft^3/min)

5.4.4 Cubicle design and drive ambient temperature

Drive derating is required for operation in high ambient temperatures

Totally enclosing or through panel mounting the drive in either a sealed cabinet (no airflow) or in a well ventilated cabinet makes a significant difference on drive cooling.

The chosen method affects the ambient temperature value (T_{rate}) which should be used for any necessary derating to ensure sufficient cooling for the whole of the drive.

The ambient temperature for the four different combinations is defined below:

- 1. Totally enclosed with no air flow (<2 m/s) over the drive $T_{rate} = T_{int} + 5$ °C
- 2. Totally enclosed with air flow (>2 m/s) over the drive $T_{rate} = T_{int}$
- 3. Through panel mounted with no airflow (<2 m/s) over the drive T_{rate} = the greater of T_{ext} +5°C, or T_{int}
- 4. Through panel mounted with air flow (>2 m/s) over the drive T_{rate} = the greater of T_{ext} or T_{int}

Where:

T_{ext} = Temperature outside the cabinet

T_{int} = Temperature inside the cabinet

T_{rate} = Temperature used to select current rating from tables in Chapter 2 *Derating curves and losses*.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

EMC 6

6.1 **VARIDYNE 2 size A to C**

EMC filters are available as optional extra parts where required.

Table 6-1 EMC filter data

	Number	Filter	part number	Filt	er type	Mounti	ng	Max motor
Used with	of phases	СТ	Schaffner	Standard	Low leakage	Footprint	Side	cable length (m)
VFKA1200025		4200-6122	FS6512-12-07	Y		Υ	Υ	50
and VFKA1200037	1	4200-6123	FS6512-12-07-LL		Y	Y	Y	30
VFKA1200055		4200-6122	FS6512-12-07	Y		Υ	Y	75
and VFKA1200075	1	4200-6123	FS6512-12-07-LL		Y	Υ	Υ	30
VFKB1100075 and VFKB1100110	1	4200-6216	FS6513-27-07	Υ		Υ	Υ	100
VFKBD200110 to	1	4200-6212	FS6513-20-07	Y		Y	Υ	100
VFKBD200150	'	4200-6214	FS6513-20-07-LL		Y	Υ	Y	75
VFKBD200110 to	3	4200-6213	FS6513-10-07	Y		Y	Y	100
VFKBD200150	3	4200-6215	FS6513-10-07-LL		Y	Y	Y	15
VFKB3400037 to	3	4200-6213	FS6513-10-07	Υ		Υ	Y	100
VFKB3400150	3	4200-6215	FS6513-10-07-LL		Y	Y	Y	15
VFKCD200220	1	4200-6310	FS6514-24-07	Y		Y	Y	100
VIIIODZOOZZO		4200-6312	FS6514-24-07-LL		Y	Υ	Y	10
VFKCD200220	3	4200-6311	FS6514-14-07	Y		Υ	Y	100
	J	4200-6217	FS6514-14-07-LL		Y	Y	Y	50
VFKC3400220 to	3	4200-6311	FS6514-14-07	Υ		Υ	Y	100
VFKC3400400		4200-6217	FS6514-14-07-LL		Y	Υ	Y	20

Table 6-2 EMC filter ratings

Used with	Number of phases	Filter	part number	Power losses at rated current	IP rating	Wei	ight	Operational leakage current	Worst case leakage current	tight	erminal ening que	Filter current rating
		СТ	Schaffner	W		Kg	lb	mA	mA	Nm	lb ft	Α
VFKA1200025 to	1	4200-6122	FS6512-12-07	4.1	20	0.42	0.9	25.7	49.5	0.8	0.6	12
VFKA1200075	'	4200-6123	FS6512-12-07-LL	6.7	20	0.44	1.0	2.5	5	0.8	0.6	12
VFKB1100075 and VFKB1100110	1	4200-6216	FS6513-27-07	7.2	20	0.68	1.5	24.9	48.2	0.8	0.6	27
VFKBD200110 to	1	4200-6212	FS6513-20-07	11.2	20	0.57	1.3	25.7	50	0.8	0.6	20
VFKBD200150	'	4200-6214	FS6513-20-07-LL	12.8	20	0.64	1.4	3.6	7	0.8	0.6	20
VFKBD200110 to	3	4200-6213	FS6513-10-07	7.5	20	0.63	1.4	40	137.2	0.8	0.6	10
VFKBD200150	3	4200-6215	FS6513-10-07-LL	7.5	20	0.63	1.4	3	18.3	0.8	0.6	10
VFKB3400037 to	3	4200-6213	FS6513-10-07	7.5	20	0.63	1.4	40	137.2	0.8	0.6	10
VFKB3400150	3	4200-6215	FS6513-10-07-LL	7.5	20	0.63	1.4	3	18.3	0.8	0.6	10
VFKCD200220	1	4200-6310	FS6514-24-07	16.2	20	0.84	1.9	25.7	50	0.8	0.6	24
VFRCD200220	'	4200-6312	FS6514-24-07-LL	18.5	20	0.91	2.0	3.6	7	0.8	0.6	24
VFKCD200220	3	4200-6311	FS6514-14-07	11.8	20	0.75	1.7	40	137.2	0.8	0.6	14
VI NODZ00220		4200-6217	FS6514-14-07-LL	11.8	20	0.74	1.6	3	18.3	0.8	0.6	14
VFKC3400220 to	3	4200-6311	FS6514-14-07	11.8	20	0.75	1.7	40	137.2	0.8	0.6	14
VFKC3400400	٥	4200-6217	FS6514-14-07-LL	11.8	20	0.74	1.6	3	18.3	0.8	0.6	14

64 VARIDYNE 2 Technical Data www.usmotors.com

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

6.1.1 Conformity Table 6-3 Conformity

		Motor cable			Filter	and swite	ching free	quency				
Used with	Number of phases	length	Inte	ernal		Star	ndard			Low	leakage	
	pccc	m	3kHz 6kHz	12kHz 18kHz	3kHz	6kHz	12kHz	18kHz	3kHz	6kHz	12kHz	18kHz
		5	E2U	E2R	R			•	R		ı	<u>.</u>
VFKA1200025 and		10	E2U	E2R	R		ı		R		ı	
VFKA1200025 and VFKA1200037	1	20		2R	R		ı				I	
		30		2R			I		I			
		50		2R			l					
		5	E2U	E2R	R		<u> </u>		R		!	
		10	E2U	E2R	R		!		R		. 1	
VFKA1200055 and VFKA1200075	1	20		2R	R		. !				1	
VI ICA 1200075		30 50		2R 2R			<u> </u> 					
		75		2R			<u> </u>	E2U				
		4	E2U	E2R		•	R	LZO				
		10		2R			R					
VFKB1100075 and		20		2R		R						
VFKB1100010 and	1	50		2R			I					
		75		2R			I					
		100		2R			I					
		4	E2U	E2R			R				R	
		10	E:	2R	R		ı				R	
VFKBD200110 to	4	40	E	2R			I				I	
VFKBD200150	1	50	E	2R			I			I		
		75	E	2R			I		ı			
		100	E	2R		l						
		2	E2U	E2R			R		R		I	
		4	E2U	E2R			R		R		I	
		5		2R			R		R		ı	
VFKBD200110 to	3	9		2R		₹		I	R		I	
VFKBD200150		15		2R		₹		I		<u> </u>		
		50		2R	R		<u> </u>					
		75		2R			l					
		100		2R		ı				1	1	
		2 5	E2U E2U	E2R	_	R R			R R		I I	
		9	E2U	E2R		₹			R		1	
VFKB3400037 to	3	15	E2R	LZIX		₹	ı		IX		<u> </u>	
VFKB3400150		50	E2R		R	`	<u> </u>			_		
		75	E2R			ı	<u> </u>					
		100	E2R			ı I						
		7	E2U	E2R			R		R	I		
		9	E2U	E2R			R		R	ı		
VFKCD200220		10	E	2R			R		R	I		
VFKCD200220	1	15	E	2R			R					
		20	E	2R		R		I				
		100	E	2R			I					
		4	E2U	E2R			R				I	
		5	E2U	E2R			R				1	-
VEV.		10		2R			R				I	
VFKCD200220	3	20		2R			R					
		50		2R		₹	ļ	I	<u> </u>			
		75		2R			1					
		100	E2U	2R E2R	ı	l D						
		4 5			<u> </u>	R R				<u> </u>		
		10	E2U E2R	2R	<u> </u>	R				<u> </u>		
VFKC3400220 to	3	20	E2R E2R		-	R			1	1		
VFKC3400400	٥	50 50	E2R E2R		-	I I			1			
		75	E2R			<u> </u>						

Technical data	Derating curves and losses	Drive voltage levels	DC bus design	Mechanical installation	EMC	AC line reactors	Motor cable lengths	General data	I/O specification	Supply types	Options
aata	aa	.0.0.0	accigi:	otaa.ro		10401010	101191110	aata	op comeanon	1,700	

Key to Table 6-3 Conformity

The requirements are listed in descending order of severity, so that if a particular requirement is met then all requirements listed after it are also met.

	Standard	Description	Frequency range	Limits	Application				
	EN 61000-6-3	Generic emission standard for the	0.15 - 0.5MHz limits decrease linearly with log frequency	66-56dBμV quasi peak 56-46dBμV average	AC cupply				
R	(previously EN 50081-1)	residential commercial and light - industrial	0.5 - 5MHz	56dBμV quasi peak 46dBμV average	AC supply lines				
IX.		environment	5 - 30MHz	60dBμV quasi peak 50dBμV average					
	EN 61800-3 IEC 61800-3	Product standard for adjustable speed power drive systems	Requirements for the	e first environment ¹ , with distribution	unrestricted				
	EN 61000-6-4 (previously EN	Generic emission standard for the	0.15 - 0.5MHz	79dBμV quasi peak 66dBμV average	AC supply				
ı	50081-2)	industrial environment	0.5 -30MHz 73dBμV quasi peak line 60dBμV average						
	EN 61800-3 IEC 61800-3	Product standard for adjustable speed power drive systems	Requirements for t	he first environment ¹ with distribution ²	restricted				
E2U	EN 61800-3 IEC 61800-3	Product standard for adjustable speed power drive systems	Requirements for the	second environment with distribution	unrestricted				
E2R	EN 61800-3 IEC 61800-3	Product standard for adjustable speed power drive systems	Requirements for th	e second environment wit distribution ²	th restricted				
			tion in this condition is not recommended						
1			nere the low voltage supply network also supplies domestic premises						
2	When distribution is restricted, drives are available only to installers with EMC competence								

This caution applies where the drive is used in the first environment according to EN 61800-3.

This is a product of the restricted distribution class according to IEC 61800-3. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

Where the drive is incorporated into a system with rated input current exceeding 100A, the higher emission limits of EN 61800-3 for the second environment are applicable, and no filter is then required.

NOTE

Operation without an external filter is a practical cost-effective possibility in an industrial installation where existing levels of electrical noise are likely to be high, and any electronic equipment in operation has been designed for such an environment. This is in accordance with EN 61800-3 in the second environment, with restricted distribution. There is some risk of disturbance to other equipment, and in this case the user and supplier of the drive system must jointly take responsibility for correcting any problem which occurs.

Figure 6-1 EMC filter dimensions

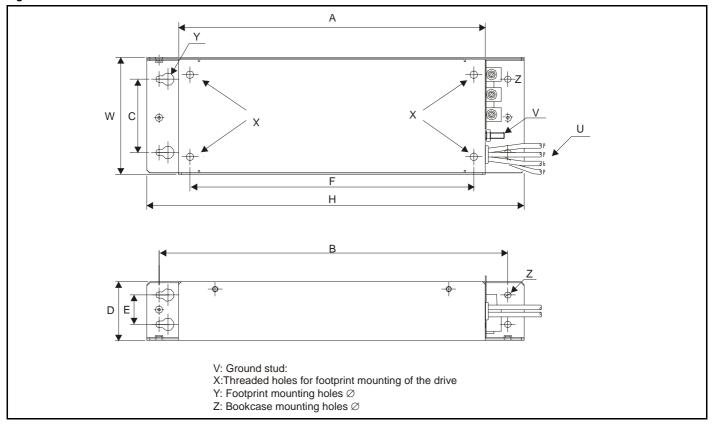
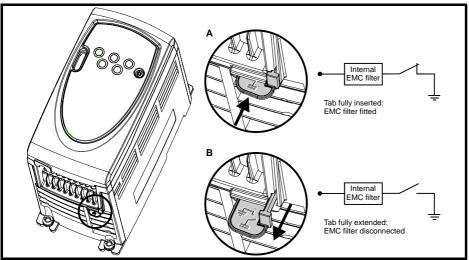


Table 6-4 EMC filter dimensions


CT part no.	Schaffner part no.	Α	В	С	D	E	F	Н	U	٧	w	Х	Y	z
4200-6122	FS6512- 12-07	155mm (6.10in)	183.5mm (7.22in)	45mm (1.77in)	40mm (1.57in)	20mm (0.78in)	144mm (5.66in)	203mm (7.99in)	16 AWG	M4	75mm (2.95in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6123	FS6512- 12-07-LL	155mm (6.10in)	183.5mm (7.22in)	45mm (1.77in)	40mm (1.57in)	20mm (0.78in)	144mm (5.66in)	203mm (7.99in)	16 AWG	M4	75mm (2.95in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6212	FS6513- 20-07	209mm (8.22in)	237.7mm (9.35in)	50mm (1.96in)	40mm (1.57in)	20mm (0.78in)	193.5mm (7.61in)	257.2mm (10.12in)	14 AWG	M4	80mm (3.15in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6214	FS6513- 20-07-LL	209mm (8.22in)	237.7mm (9.35in)	50mm (1.96in)	40mm (1.57in)	20mm (0.78in)	193.5mm (7.61in)	257.2mm (10.12in)	14 AWG	M4	80mm (3.15in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6213	FS6513- 10-07	209mm (8.22in)	237.7mm (9.35in)	50mm (1.96in)	40mm (1.57in)	20mm (0.78in)	193.5mm (7.61in)	257.2mm (10.12in)	14 AWG	M4	80mm (3.15in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6215	FS6513- 10-07-LL	209mm (8.22in)	237.7mm (9.35in)	50mm (1.96in)	40mm (1.57in)	20mm (0.78in)	193.5mm (7.61in)	257.2mm (10.12in)	14 AWG	M4	80mm (3.15in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6216	FS6513- 27-07	209mm (8.22in)	237.7mm (9.35in)	50mm (1.96in)	40mm (1.57in)	20mm (0.78in)	193.5mm (7.61in)	257.2mm (10.12in)	12 AWG	M4	80mm (3.15in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6310	FS6514- 24-07	260mm (10.23in)	288.5mm (11.35in)	65mm (2.55in)	45mm (1.77in)	20mm (0.78in)	244mm (9.60in)	308mm (12.12in)	12 AWG	M4	94mm (3.70in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6312	FS6514- 24-07-LL	260mm (10.23in)	288.5mm (11.35in)	65mm (2.55in)	45mm (1.77in)	20mm (0.78in)	244mm (9.60in)	308mm (12.12in)	12 AWG	M4	94mm (3.70in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6311	FS6514- 14-07	260mm (10.23in)	288.5mm (11.35in)	65mm (2.55in)	45mm (1.77in)	20mm (0.78in)	244mm (9.60in)	308mm (12.12in)	16 AWG	M4	94mm (3.70in)	M4	8.7mm (0.34in)	4.5mm (0.17in)
4200-6217	FS6514- 14-07-LL	260mm (10.23in)	288.5mm (11.35in)	65mm (2.55in)	45mm (1.77in)	20mm (0.78in)	244mm (9.60in)	308mm (12.12in)	16 AWG	M4	94mm (3.70in)	M4	8.7mm (0.34in)	4.5mm (0.17in)

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

6.1.2 **Internal EMC filter**

It is recommended that the internal EMC filter be kept in place unless there is a specific reason for removing it.

Figure 6-2 Removal and re-fitting of internal EMC filter

VARIDYNE 2 size 2 to 6 6.2

Table 6-5 External EMC filter data

Drive	Filter num	r part nber	Moun	ting	Max motor cable length to meet EMC
	Schaffner	Epcos	Footprint	Side	requirements (m)
VFK2201 to VFK2203	4200-6210		Y	Υ	
VFR2201 to VFR2203		4200-6211	Y	Y	
VFK3201 to VFK3202	4200-6307		Y	Y	
VFN3201 (0 VFN3202		4200-6306	Y	Υ	
VFK4201 to VFK4203	4200-6406		Y	Υ	
VFK4201 to VFK4203		4200-6405			
\/F\/2404 to \/F\/2404	4200-6210		Y	Υ	
VFK2401 to VFK2404		4200-6211	Y	Υ	
\/E\/\0.404_\t-\\/E\/\0.400	4200-6305		Y	Υ	
VFK3401 to VFK3403		4200-6306	Y	Υ	
\/FIX4404 t- \/FIX4400	4200-6406		Y	N	
VFK4401 to VFK4403		4200-6405	Y	N	400
\/E\/E 404 + \/E\/E 400	4200-6503				100
VFK5401 to VFK5402		4200-6501	Y	N	
\/E\/\0.404 \ \/E\/\0.400	4200-6603		Y	N	
VFK6401 to VFK6402		4200-6601			
\/F\/0504 t- \/F\/0507	4200-6309		Υ	Υ	
VFK3501 to VFK3507		4200-6308	Y	Υ	
\/FI/4004 / \/FI/4000	4200-6408		Y	N	
VFK4601 to VFK4606		4200-6407	Y	N	
\/F//F004 t- \/F//F000	4200-6504		Y	N	
VFK5601 to VFK5602		4200-6502	Υ	N	
\/E//0004 / \/E//0000	4200-6604				
VFK6601 to VFK6602		4200-6602			

ı	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
ı	data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Table 6-6 External EMC filter ratings

		Maxi		Voltage		Power	Ground leaka	ge	
CT part	Manufacturer	@ 40°C	@ 50°C	rating	IP	dissipation at	Balanced supply phase-to-phase and	Worst case	Discharge
number		(104°F) A	(122°F) A	v	rating	rated current W	phase-to-ground mA	mA	resistors
4200-6210		32	28.2	400		11	38.0	206	
4200-6305		62	56.6	400	1	23	66.0	357	See Note 1
4200-6307		75	68.5	200	1	29	24.0	170	
4200-6309		30	30	575	20	15	102.0	557	See Note 3
4200-6406	Schaffner	101	92.2	400	20	25	73.0	406	See Note 1
4200-6408	Schainei	58	52.8	690	1	31	66.0	344	See Note 1
4200-6503		164	150	480	1	30	39.1	216	See Note 4
4200-6504		95	86.7	690	1	30	66.0	344	
4200-6603		260	237	480	00	14.2	41.0	219	See Note 1
4200-6604		160	146	690	00	5.4	88.5	296	
4200-6211		32	29.1	400		17.8	<30.0	186.5	
4200-6306		75	68.3	400		19.4	<50.0	238	See Note 2
4200-6308		30	22.5	660		17.6	<35.0	230	See Note 2
4200-6405		101	75	480	20	30	<30.0	180	
4200-6407	Epcos	58	44	690		15	<40.0	<340	See Note 5
4200-6501		165	125	480		27	<20.0	<120	See Note 2
4200-6502		95	71	690	1	19	<55.0	<450	
4200-6601		260	195	480	00	13	<45.0	<375	See Note 5
4200-6602		160	120	690	00	5	<60.0	<520	

NOTE

- 1. $1M\Omega$ in a star connection between phases, with the star point connected by a $680k\Omega$ resistor to ground (i.e. line to line $2M\Omega$, line to ground $1.68M\Omega$)
- 2. $1M\Omega$ in a star connection between phases, with the star point connected by a $1.5M\Omega$ resistor to ground (i.e. line to line $2M\Omega$, line to ground $2.5M\Omega$)
- 3. $2M\Omega$ between phases with each phase connected by a $660k\Omega$ resistance to ground.
- 4. 1.5MΩ in a star connection between phases, with the star point connected by a 680kΩ resistor to ground (i.e. line to line 3MΩ, line to ground 2.18MΩ)
- 5. $1.8M\Omega$ in a star connection between phases, with the star point connected by a $1.5M\Omega$ resistor to ground (i.e. line to line $3.6M\Omega$, line to ground $3.3M\Omega$)

6.2.1 Overall external EMC filter dimensions

Table 6-7 Optional external EMC filter dimensions

CT part	Manufacturer		Weight			
number	Manufacturer	Н	W	D	kg	lb
4200-6210		428.5 mm (16.870 in)	155 mm (6.102 in)	55 mm (2.165 in)	2	4.4
4200-6305						
4200-6307		414 mm (16.299 in)	250 mm (9.842 in)	60 mm (2.362 in)	3.5	7.7
4200-6309						
4200-6406	Schaffner		225 mm (8.858 in)	100 mm (3.937 in)	4	8.8
4200-6408		000 (44 044 :-)	208 mm (8.189 in)	100 111111 (3.937 111)	3.8	8.4
4200-6503		300 mm (11.811 in)	249 mm (9.803 in)	120 mm (4.724 in)	6.8	15
4200-6504			225 mm (8.858 in)	100 mm (3.937 in)	4.4	9.7
4200-6603		135 mm (5.315 in)	295 mm (11.614 in)	230 mm (9.055 in)	5.25	11.6
4200-6604						
4200-6211		431.5 mm (16.988 in)	155 mm (6.102 in)	55 mm (2.165 in)	3.3	7.3
4200-6306		425 mm (16.732 in)	250 mm (9.843 in)	60 mm (2.362 in)	5.1	11.2
4200-6308		423 11111 (10.732 111)	230 11111 (9.043 111)	00 11111 (2.302 111)	5.1	11.2
4200-6405			207 mm (8.150 in)	90 mm (3.543 in)	7.8	17.2
4200-6407	Epcos	300 mm (11.811 in)	205 mm (8.071 in)	90 11111 (3.543 111)	8.0	17.6
4200-6501		300 111111 (11.011 111)	249 mm (9.803 in)	120 mm (4.724 in)	12.0	26.5
4200-6502			249 11111 (9.003 111)	120 111111 (4.724 111)	10.0	22.0
4200-6601		364 mm (14.331 in)	230 mm (9.055 in)	147 mm (5.787 in)	8.6	19.0
4200-6602		304 HIII (14.331 III)	230 mm (8.000 m)	147 111111 (3.767 111)	0.0	19.0

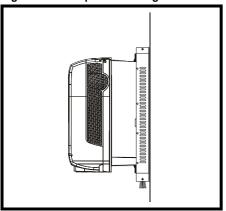
Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

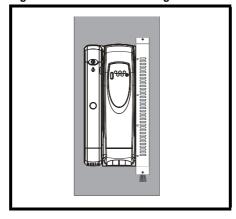
6.2.2 External EMC filter torque settings size 2 to 6

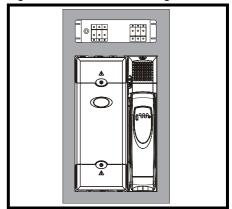
Table 6-8 Optional external EMC filter terminal data

CT part	Manufacturer	Power con	nections	Ground co	nnections	
number	Manufacturer _	Max cable size	Max torque	Ground stud size	Max torque	
4200-6210		10mm ² 8AWG	2.0 N m (1.5 lb ft)	M5	3.5 N m (2.6 lb ft)	
4200-6305	1					
4200-6307		16mm ² 6AWG	2.2 N m (1.6 lb ft)	M6	3.9 N m (2.9 lb ft)	
4200-6309						
4200-6406	0 . "	50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)	
4200-6408	Schaffner	25mm ² 4AWG	2.3 N m (1.7 lb ft)	M6	3.9 N m (2.9 lb ft)	
4200-6503	1	95mm ² 4/0AWG	20 N m (14.7 lb ft)			
4200-6504		50mm ² 0AWG	8 N m (5.9 lb ft)	M10	25 N m (18.4 lb ft)	
4200-6603	1			WITO	20 11 11 (10.110 10)	
4200-6604	1					
4200-6211		10mm ² 8AWG	1.35 N m (1.0 lb ft)	M5	3.0 N m (2.2 lb ft)	
4200-6306	1	16mm ² 6AWG	2.2 N m (1.6 lb ft)	MC	5 4 N (2 0 lb ft)	
4200-6308	1	10mm ² 8AWG	1.35 N m (1.0 lb ft)	M6	5.1 N m (3.8 lb ft)	
4200-6405	† †	50 2 0 MMO	6.0 N m /F 0 lb ft)			
4200-6407	Epcos	50mm ² 0AWG	6.8 N m (5.0 lb ft)		10 N m (7.4 lb ft)	
4200-6501	1	95mm ² 4/0AWG	20 N m (14.7 lb ft)	M10		
4200-6502]	95IIIIII 4/UAWG	20 14 111 (14.7 10 11)	IVITO	10 14 111 (7.4 10 11)	
4200-6601	1					
4200-6602						

The external EMC filters for sizes 2 and 3 can be footprint or bookcase mounted, see Figure 6-3 and Figure 6-4. The external EMC filters for sizes 4 to 6 are designed to be mounted above the drive, as shown in Figure 6-5.

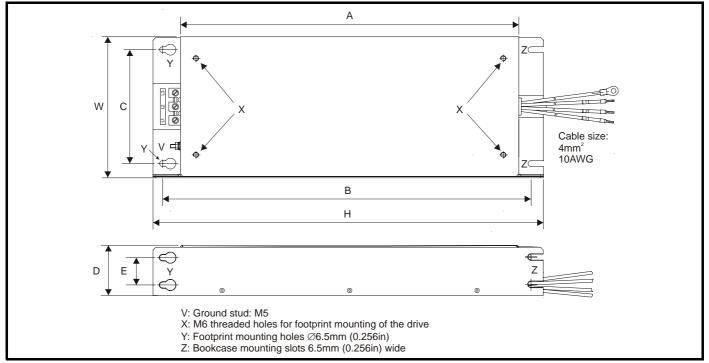

High ground leakage current


When an EMC filter is used, a permanent fixed ground connection must be provided which does not pass through a connector or flexible power cord. This includes the internal


The installer of the drive is responsible for ensuring compliance with the EMC regulations that apply where the drive is to be used.

Mount the external EMC filter following the guidelines in section Compliance with generic emission standards on page 78.

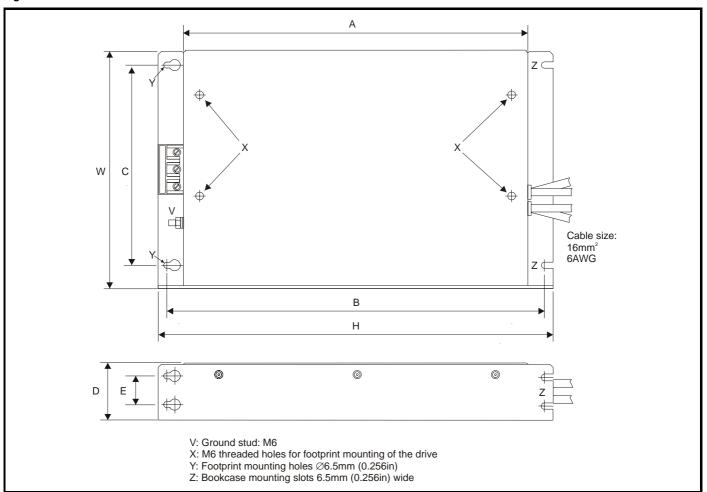
Figure 6-3 Footprint mounting the EMC filter Figure 6-4 Bookcase mounting the EMC filter Figure 6-5 Size 4 to 6 mounting of EMC filter



70 VARIDYNE 2 Technical Data

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions	ı
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options	ı

Figure 6-6 Size 2 external EMC filter

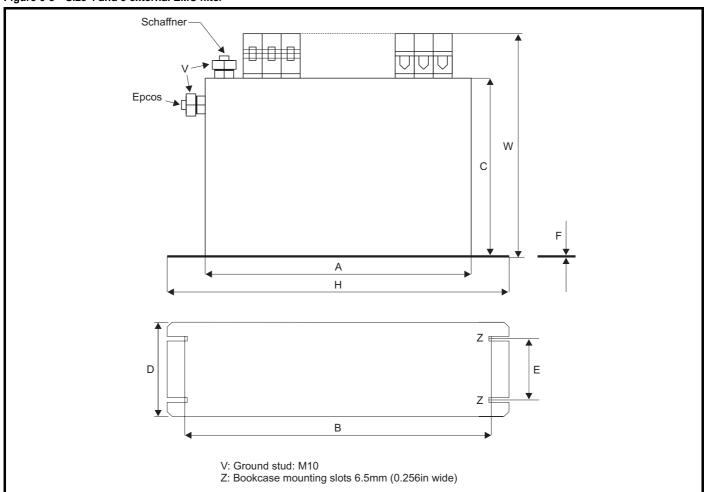


All filter mounting holes are suitable for M6 fasteners.

CT part no.	Manufacturer	Α	В	С	D	Е	Н	W
4200-6210	Schaffner	371.5 mm	404.5 mm	125 mm	55 mm	30 mm	428.5 mm (16.870 in)	155 mm
4200-6211	Epcos	(14.626 in)	(15.925 in)	(4.921 in)	(2.165 in)	(1.181 in)	431.5 mm (16.988 in)	(6.102 in)

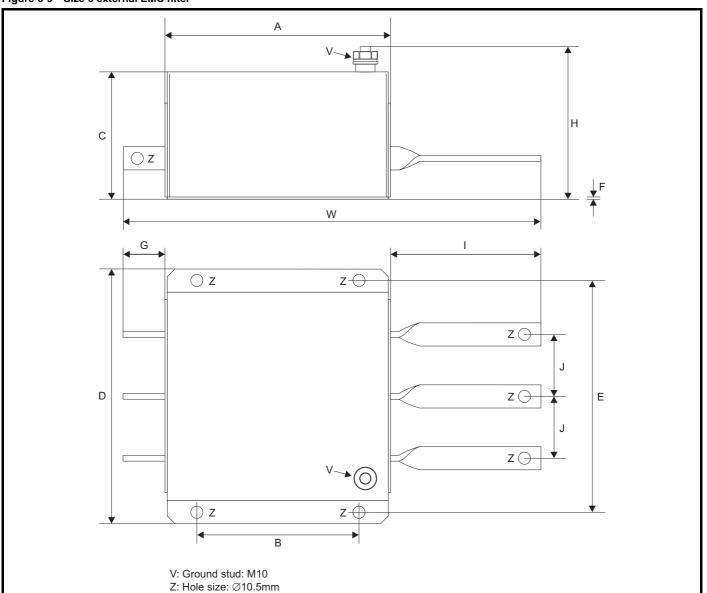
Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Figure 6-7 Size 3 external EMC filter



CT part no.	Manufacturer	Α	В	С	D	E	Н	W	
4200-6305		361 mm					414 mm		
4200-6307	Schaffner	Schaffner	(14.213 in)	306 mm	040	CO	20	(16.299 in)	250
4200-6309		(14.210 111)	396 mm . (15.591 in)	210 mm (8.268 in)	60 mm (2.362 in)	30 mm (1.181 in)	(10.233 111)	250 mm (9.843 in)	
4200-6306	Epcos	365 mm					425 mm	(0.040 11)	
4200-6308	Lpcos	(14.370 in)					(16.732 in)		

72


Figure 6-8 Size 4 and 5 external EMC filter

CT part no.	Manufacturer	Α	В	С	D	E	F	Н	W	
4200-6406					100 mm	65 mm			225 mm (8.858 in)	
4200-6408	Schaffner			170 mm	(3.937 in)	(2.559 in)	1.5 mm		208 mm (8.189 in)	
4200-6503	Schainlei			(6.693 in)	120 mm (4.724 in)	85 mm (3.346 in)	(0.059in)		249 mm (9.803 in)	
4200-6504		260 mm (10.236 in)	275 mm (10.827 in)		100 mm (3.937 in)	65 mm (2.559 in)		300 mm (11.811 in)	225 mm (8.858 in)	
4200-6405	Epcos			150 mm	90 mm	65 mm	2 mm		207 mm (8.150 in)	
4200-6407				(5.90	(5.906 in)	(3.543in)	(2.559 in)	(0.079 in)		205 mm (8.071 in)
4200-6501				170 mm	120 mm	85 mm	1 mm		249 mm	
4200-6502				(6.693 in)	(4.724 in)	(3.346 in)	(0.039 in)		(9.803 in)	

Figure 6-9 Size 6 external EMC filter

CT part no.	Manufacturer	Α	В	С	D	E	F	G	Н	I	J	W
4200-6603	Schaffner	196 mm	139.9 mm	108 mm	230 mm	210 mm	2 mm	38 mm	136 mm	128 mm	53.5 mm	364 mm
4200-0003	Schainei	(7.717 in)	(5.508 in)	(4.252 in)	(9.055 in)	(8.268 in)	(0.079in)	(1.496 in)	(5.354 in)	(5.039 in)	(2.106 in)	(14.331 in)

74 VARIDYNE www.usmotors.com

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

6.2.3 Conformity for sizes 2 to 6

Table 6-9 Conformity size 2 to 4

					and switchin				
or cable		Internal		ı	nternal and f	errite*		External	
· · · · · · ·	3kHz	6kHz	12kHz	3kHz	6kHz	12kHz	3kHz	6kHz	12kHz
Any		E2R							
0 to 4					E2U	E2R			
to 10				E2U		E2R			
> 10					E2R				
) to 25								R	I
5 to 75								I	
to 100							I		
Any		E2R							
0 to 4					E2U	E2R			
to 10				E2U		E2R			
> 10					E2R				
) to 25								R	I
5 to 75								ı	
to 100							I		
Any		E2R							
) to 10				E2U		E2R			
> 10					E2R				
) to 20							R	I	
0 to 50								l	
0 to 75								1	
to 100							I		
Any		E2R							
) to 10				E2U		E2R			
> 10					E2R		_		
) to 20							R		
0 to 50									
0 to 75								ı	
to 100							ı		
Any									
) to 10									
> 10									
) to 20									
0 to 50									
0 to 75									
to 100		2R							
Any		ZZK						4	
								<u> </u>	
							<u> </u>		
		-2P					<u>'</u>	EZU	
_	1	-ZN							
								<u> </u>	
							 	· ·	
to 100									
5 to 50 6 to 75 6 to 10 6 to 10 6 to 25 6 to 50 6 to 75	0 0	5 0 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	E2R	E2R	E2R	E2R	E2R	E2R	E2R

^{*} Included in the Accessory Kit Box.

•												
	Technical	Derating curves	Drive voltage	DC bus	Mechanical		AC line	Motor cable	General	I/O	VlaguS	
		2 0. atm.g 0 a. 1 0 0	Directionage	20 200		EMC	7 10 11110		000.0.		Oupp.,	Options
	data	and losses	levels	desian	installation	EIVIC	reactors	lenaths	data	specification	types	Options
	data	and 100000	10 4 013	ucsign	motanation		Todolois	icriguis	uata	Specification	types	

Table 6-10 Conformity size 4 to 6

			Filter and switch	hing frequency	
Drive	Motor cable length (m)	Inter	nal	Ext	ernal
		3kHz	6kHz	3kHz	6kHz
	Any	E2	R		
\/EI/.4004.t-	0 to 25			I	I
VFK4601 to VFK4606	25 to 50			1	E2U
V1 114000	50 to 75			I	E2U
	75 to 100			I	E2U
VFK5401 to	100	E2	U		
VFK5402	0 to 100			I	I
\/F\/F604 to	100	E2	R		
VFK5601 to VFK5602	0 to 25			I	I
V1 110002	0 to 100			I	
\/E\/C404 +=	0 to 100	E2	U		
VFK6401 to VFK6402	100 to max*	E2	R		
VI 110-102	0 to 100			I	I
	0 to 100	E2	U		
VFK6601 to	100 to max*	E2	R		
VFK6602	0 to 25			I	I
	0 to 100			I	Do not use

See Chapter 8 Motor cable lengths on page 88 for maximum permitted length.

Key (shown in decreasing order of permitted emission level):

EN 61800-3 second environment, restricted distribution (Additional measures may be required to prevent interference)

E2U EN 61800-3 second environment, unrestricted distribution

ı Industrial generic standard EN 50081-2 (EN 61000-6-4) EN 61800-3 first environment restricted distribution (The following caution is required by EN 61800-3)

This is a product of the restricted distribution class according to IEC 61800-3. In a domestic environment this product may cause radio interference in which case the user may be CAUTION required to take adequate measures.

R Residential generic standard EN 50081-1 (EN 61000-6-3) EN 61800-3 first environment unrestricted distribution

EN 61800-3 defines the following:

- The first environment is one that includes domestic premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for domestic purposes.
- The second environment is one that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for domestic purposes.
- Restricted distribution is defined as a mode of sales distribution in which the manufacturer restricts the supply of equipment to suppliers, customers or users who separately or jointly have technical competence in the EMC requirements of the application of drives.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Electromagnetic compatibility (EMC)

This is a summary of the EMC performance of the drive.

Table 6-11 Immunity compliance

Standard	Type of immunity	Test specification	Application	Level
IEC61000-4-2	Electrostatic	6kV contact discharge	Module	Level 3
EN61000-4-2	discharge	8kV air discharge	enclosure	(industrial)
IEC61000-4-3 EN61000-4-3	Radio frequency radiated field	10V/m prior to modulation 80 - 1000MHz 80% AM (1kHz) modulation	Module enclosure	Level 3 (industrial)
IEC61000-4-4	Fast transient	5/50ns 2kV transient at 5kHz repetition frequency via coupling clamp	Control lines	Level 4 (industrial harsh)
EN61000-4-4	burst	5/50ns 2kV transient at 5kHz repetition frequency by direct injection	Power lines	Level 3 (industrial)
		Common mode 4kV 1.2/50µs waveshape	AC supply lines: line to ground	Level 4
IEC61000-4-5 EN61000-4-5	Surges	Differential mode 2kV 1.2/50μs waveshape	AC supply lines: line to line	Level 3
		Lines to ground	Signal ports to ground ¹	Level 2
IEC61000-4-6 EN61000-4-6	Conducted radio frequency	10V prior to modulation 0.15 - 80MHz 80% AM (1kHz) modulation	Control and power lines	Level 3 (industrial)
IEC61000-4-11 EN61000-4-11	Voltage dips and interruptions	-30% 10ms +60% 100ms -60% 1s <-95% 5s	AC power ports	
EN50082-1 IEC61000-6-1 EN61000-6-1		y standard for the nercial and light - nment		Complies
EN50082-2 IEC61000-6-2 EN61000-6-2	industrial enviror			Complies
EN61800-3 IEC61800-3 EN61800-3	Product standard power drive system requirements)	d for adjustable speed ems (immunity	Meets immunity for first and secon environments	

¹ See section *Surge immunity of control circuits - long cables and connections outside a building* on page 78 for control ports for possible requirements regarding grounding and external surge protection

Emission

The drive contains an in-built filter for basic emission control. An additional optional external filter provides further reduction of emission. The requirements of the standards are met, depending on the motor cable length and switching frequency.

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O Supply **EMC** Options and losses design installation reactors lengths specification data levels data types

Surge immunity of control circuits - long cables and connections outside a building

The input/output ports for the control circuits are designed for general use within machines and small systems without any special precautions.

These circuits meet the requirements of EN61000-6-2 (1kV surge) provided the 0V connection is not grounded.

In applications where they may be exposed to high-energy voltage surges, some special measures may be required to prevent malfunction or damage. Surges may be caused by lightning or severe power faults in association with grounding arrangements which permit high transient voltages between nominally grounded points. This is a particular risk where the circuits extend outside the protection of a building.

As a general rule, if the circuits are to pass outside the building where the drive is located, or if cable runs within a building exceed 30m, some additional precautions are advisable. One of the following techniques should be used:

- 6. Galvanic isolation, i.e. do not connect the control 0V terminal to ground. Avoid loops in the control wiring, i.e. ensure every control wire is accompanied by its return (0V) wire.
- 7. Shielded cable with additional power ground bonding. The cable shield may be connected to ground at both ends, but in addition the ground conductors at both ends of the cable must be bonded together by a power ground cable (equipotential bonding cable) with cross-sectional area of at least 10mm², or 10 times the area of the signal cable shield, or to suit the electrical safety requirements of the plant. This ensures that fault or surge current passes mainly through the ground cable and not in the signal cable shield. If the building or plant has a well-designed common bonded network this precaution is not necessary.
- 8. Additional over-voltage suppression for the analogue and digital inputs and outputs, a zener diode network or a commercially available surge suppressor may be connected in parallel with the input circuit as shown in Figure 6-10 and Figure 6-11.

If a digital port experiences a severe surge its protective trip may operate (O.Ld1 trip code 26). For continued operation after such an event, the trip can be reset automatically by setting Pr 10.34 to 5.

Figure 6-10 Surge suppression for digital and unipolar inputs and outputs

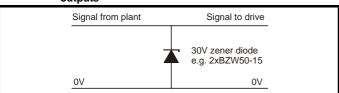
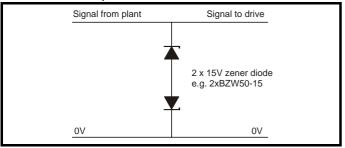



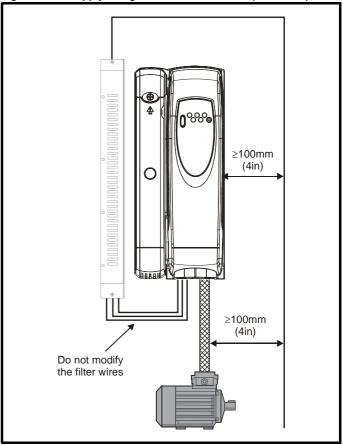
Figure 6-11 Surge suppression for analogue and bipolar inputs and outputs

Surge suppression devices are available as rail-mounting modules, e.g. from Phoenix Contact:

Unipolar TT-UKK5-D/24 DC Bipolar TT-UKK5-D/24 AC

These devices are not suitable for encoder signals or fast digital data networks because the capacitance of the diodes adversely affects the signal. Most encoders have galvanic isolation of the signal circuit from the motor frame, in which case no precautions are required. For data networks, follow the specific recommendations for the particular network.

Compliance with generic emission standards


The following information applies to frame sizes 2 to 5.

Size 6 upwards does not comply with the requirements of the generic standards for radiated emission.

Size 6 complies with the requirements for conducted emission.

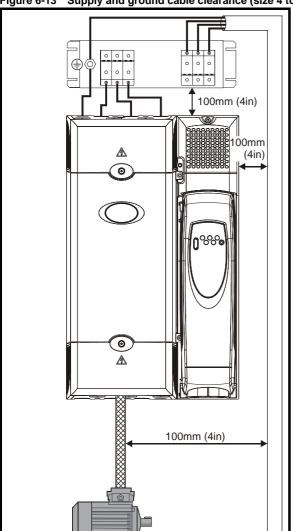

Use the recommended filter and shielded motor cable. Observe the layout rules given in Figure 6-12. Ensure the AC supply and ground cables are at least 100mm from the power module and motor cable.

Figure 6-12 Supply and ground cable clearance (size 2 to 3)

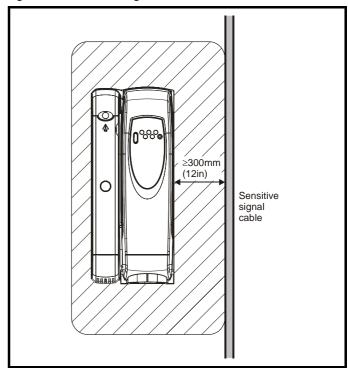

Derating curves and losses Supply types DC bus AC line Technical Drive voltage Mechanical Motor cable General I/O **EMC** Options data levels design installation reactors lengths data specification

Figure 6-13 Supply and ground cable clearance (size 4 to 6)

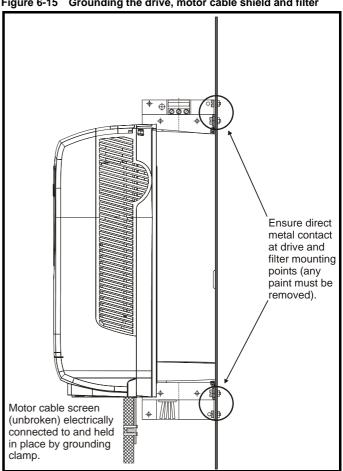
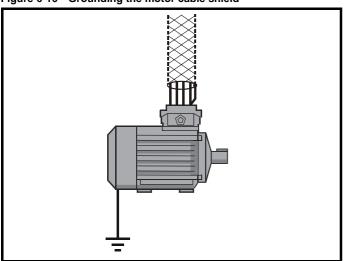

Avoid placing sensitive signal circuits in a zone 300mm (12in) all around the power module.

Figure 6-14 Sensitive signal circuit clearance

Ensure good EMC grounding.

Figure 6-15 Grounding the drive, motor cable shield and filter


79 **VARIDYNE 2 Technical Data**

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O Supply **EMC** Options and losses design installation reactors lengths specification data levels data types

Connect the shield of the motor cable to the ground terminal of the motor frame using a link that is as short as possible and not exceeding 50mm (2in) long. A full 360° termination of the shield to the terminal housing of the motor is beneficial.

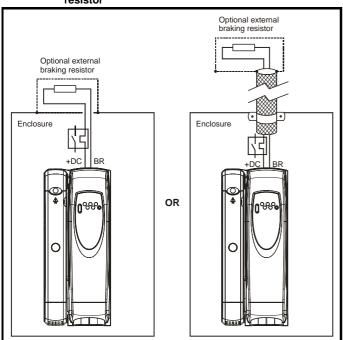
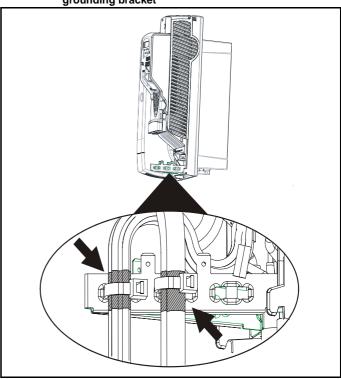

It is unimportant for EMC purposes whether the motor cable contains an internal (safety) ground core, or there is a separate external ground conductor, or grounding is through the shield alone. An internal ground core will carry a high noise current and therefore it must be terminated as close as possible to the shield termination.

Figure 6-16 Grounding the motor cable shield

Unshielded wiring to the optional braking resistor(s) may be used, provided the wiring does not run external to the enclosure. Ensure a minimum spacing of 300mm (12in) from signal wiring and the AC supply wiring to the external EMC filter. Otherwise this wiring must be shielded.


Figure 6-17 Shielding requirements of optional external braking resistor

If the control wiring is to leave the enclosure, it must be shielded and the shield(s) clamped to the drive using the grounding bracket as shown in Figure 6-18. Remove the outer insulating cover of the cable to ensure the shield(s) make contact with the bracket, but keep the shield(s) intact until as close as possible to the terminals

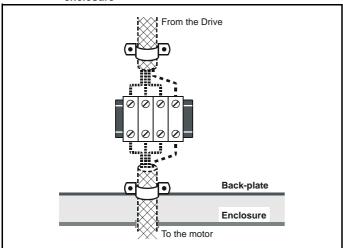
Alternatively, wiring may be passed through a ferrite ring, part no. 3225-

Figure 6-18 Grounding of signal cable shields using the grounding bracket

Variations in the EMC wiring Interruptions to the motor cable

The motor cable should ideally be a single length of shielded or armoured cable having no interruptions. In some situations it may be necessary to interrupt the cable, as in the following examples:

- Connecting the motor cable to a terminal block in the drive enclosure
- Fitting a motor isolator switch for safety when work is done on the

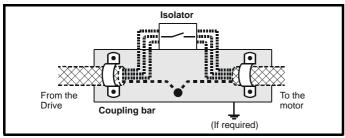

In these cases the following guidelines should be followed.

Terminal block in the enclosure

The motor cable shields should be bonded to the back-plate using uninsulated metal cable-clamps which should be positioned as close as possible to the terminal block. Keep the length of power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away from the terminal block.

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable I/O Supply General **FMC** Options types data and losses design installation reactors lengths specification levels data

Figure 6-19 Connecting the motor cable to a terminal block in the

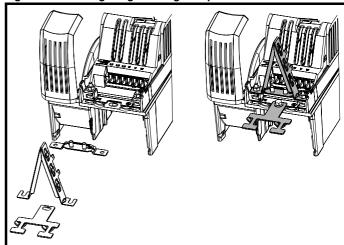

Using a motor isolator-switch

The motor cable shields should be connected by a very short conductor having a low inductance. The use of a flat metal coupling-bar is recommended; conventional wire is not suitable.

The shields should be bonded directly to the coupling-bar using uninsulated metal cable-clamps. Keep the length of the exposed power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3m (12 in) away.

The coupling-bar may be grounded to a known low-impedance ground nearby, for example a large metallic structure which is connected closely to the drive ground.

Figure 6-20 Connecting the motor cable to an isolator switch

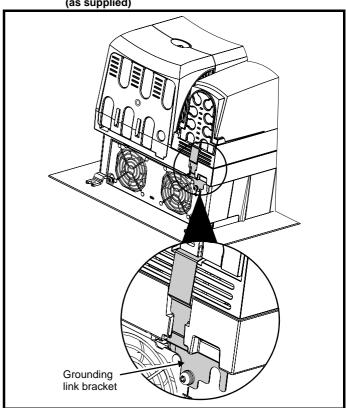


Grounding hardware

The VARIDYNE 2 size 2 and 3 are provided with a grounding bracket and grounding clamp. They can be used as cable management bracket/ clamp or they can be used to facilitate EMC compliance. They provide a convenient method for direct grounding of cable shields without the use of 'pig tails'. Cable shields can be bared and clamped to the grounding bracket using metal clips or clamps* (not supplied) or cable ties. Note that the shield must in all cases be continued through the cable clamp to the intended terminal on the drive, in accordance with the connection details for the specific signal.

*A suitable clamp is the Phoenix DIN rail mounted SK14 cable clamp (for cables with a maximum outer diameter of 14mm).

Figure 6-21 Fitting the grounding clamp


A faston tab is located on the grounding bracket for the purpose of connecting the drive 0V to ground should the user require to do so.

On VARIDYNE 2 size 2, the grounding bracket is secured using the power ground terminal of the drive. Ensure that the supply ground connection is secure after fitting/removing the grounding bracket. Failure to do so will result in the drive not being grounded.

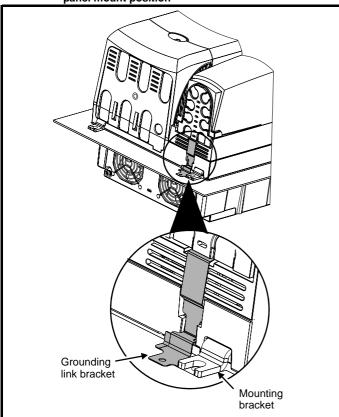
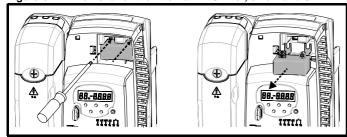

When a VARIDYNE 2 size 4 or 5 is through-panel mounted, the grounding link bracket must be folded upwards. A screw can be used to secure the bracket or it can be located under the mounting bracket to ensure that a good ground connection is made. This is required to provide a grounding point for the grounding bracket as shown in Figure 6-22.

Figure 6-22 Grounding link bracket in its surface mount position (as supplied)

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O Supply **EMC** Options data and losses levels design installation reactors lengths data specification types

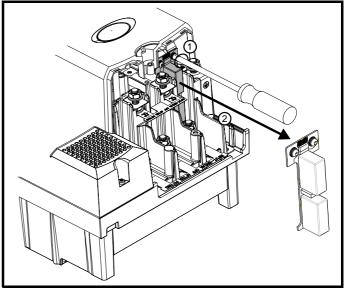
Figure 6-23 Grounding link bracket folded up into its throughpanel mount position

Internal EMC filter


It is recommended that the internal EMC filter be kept in place unless there is a specific reason for removing it.

On VARIDYNE 2 size 3, 4, 5 and 6, when used with ungrounded (IT) supplies, the internal EMC filter must be removed unless additional motor ground fault protection is fitted or, in the case of size 3 only, the external EMC filter is also used.

For instructions on removal, refer to Figure 6-24.


Figure 6-24 Removal of the internal EMC filter, size 2 and 3

Loosen/remove screws as shown (1) and (2).

Remove filter (3) and ensure the screws are replaced and re-tightened (4).

Figure 6-25 Removal of the internal EMC filter, size 4, 5 and 6

Loosen screws (1). Remove EMC filter in the direction shown (2).

The internal EMC filter reduces radio-frequency emissions into the mains supply. Where the motor cable length is short, it permits the requirements of EN61800-3 to be met for the second environment. For longer motor cables, the filter continues to provide a useful reduction in emission level, and when used with any length of shielded motor cable up to the limit for the drive, it is unlikely that nearby industrial equipment will be disturbed. It is recommended that the filter be used in all applications unless the instructions given above require it to be removed or the ground leakage current of 28mA is unacceptable.

Use of earth (ground) leakage circuit breakers (ELCB) / residual current device (RCD)

There are three common types of ELCB/RCD:

Type AC - detects AC fault currents

Type A - detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)

Type B - detects AC, pulsating DC and smooth DC fault currents

- Type AC should never be used with drives
- Type A can only be used with single phase drives
- Type B must be used with three phase drives

Further EMC precautions

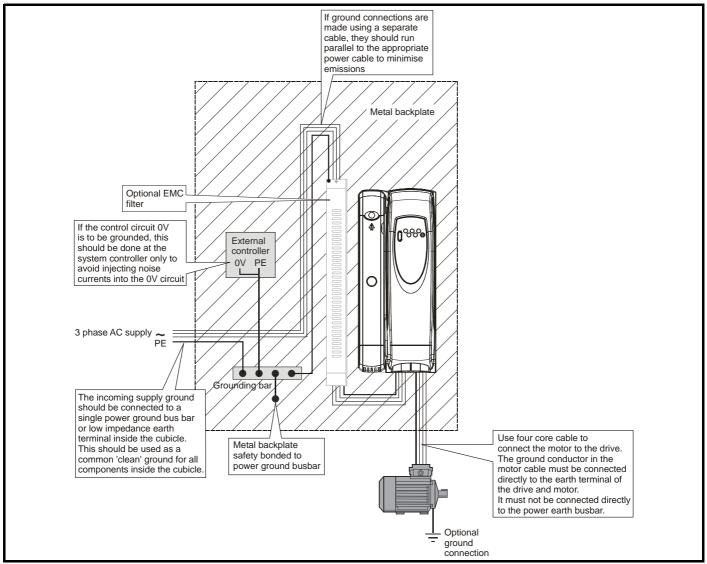
Further EMC precautions are required if more stringent EMC emission requirements apply:

- Operation in the first environment
- Conformity to the generic emission standards
- Equipment which is sensitive to electrical interference operating nearby

In this case it is necessary to use:

The optional external EMC filter

- A screened motor cable, with the screen clamped to the grounded metal panel
- A screened control cable, with the screen clamped to the grounded metal panel
- Full instructions are given in the VARIDYNE 2 EMC Guide
- A full range of external EMC filters is also available for use with VARIDYNE 2.

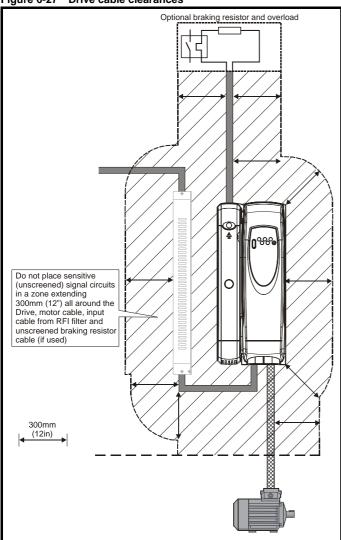

Technical	Derating curves	Drive voltage	DC bus	Mechanical		AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

General requirements for EMC Ground (earth) connections

The grounding arrangements should be in accordance with Figure 6-26, which shows a single drive on a back-plate with or without an additional enclosure.

Figure 6-26 shows how to manage EMC when using an unshielded motor cable. However a shielded cable is preferable, in which case it should be installed as shown in section *Compliance with generic emission standards* on page 78.

Figure 6-26 General EMC enclosure layout showing ground connections



1	Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
	data	and losses	levels	design	installation	ENIC	reactors	lengths	data	specification	types	Options

Cable layout

Figure 6-27 indicates the clearances which should be observed around the drive and related 'noisy' power cables by all sensitive control signals

Figure 6-27 Drive cable clearances

Any signal cables which are carried inside the motor cable (i.e. motor thermistor, motor brake) will pick up large pulse currents via the cable capacitance. The screen of these signal cables must be connected to ground close to the motor cable, to avoid this noise current spreading through the control system.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

AC line reactors

Table 7-1 AC line reactor values

Drives used with	Reactor part number	Input phases	Inductance	Continuous rms current	Peak current	Weight	Di	mensio	ns
	number	pnases	mH	Α	Α	Kg	L	D	Н
VFKA1200025	4402-0224	1	2.25	6.5	13	0.8	72	65	90
VFKA1200037	4402-0224	'	2.25	6.5	13	0.6	12	65	90
VFKA1200055									
VFKA1200075	4402-0225	1	1.0	15.1	30.2	1.1	82	75	100
VFKBD200110									
VFKBD200150	4402-0226	1	0.5	26.2	52.4	1.5	82	90	105
VFKCD200220	4402-0226		0.5	20.2	32.4	1.5	02	90	105
VFKBD200110	4402-0228	2	1.0	15.4	47.4	3.8	150	90	150
VFKBD200150	4402-0228	3	1.0	15.4	47.4	3.8	150	90	150
VFKCD200220	4402-0229	3	0.4	24.6	49.2	3.8	150	90	150
VFKB3400037									
VFKB3400055									
VFKB3400075	4402-0227	3	2.0	7.9	15.8	3.5	150	90	150
VFKB3400110									
VFKB3400150									
VFKC3400220									
VFKC3400300	4402-0228		1.0	15.4	47.4	3.8	150	90	150
VFKC3400400									
VFK2201									
VFK2202	4402-0229	3	0.4	24.6	49.2	3.8	150	90	150
VFK2401									
VFK2402	4402-0232	3	0.6	27.4	54.8	6	180	100	190
VFK2403									
VFK2404	4400 0040**	_	0.45	40	00		400	450	005
VFK3401	4400-0240**	3	0.45	46	92		190	150	225
VFK3402	1								
VFK2203	4400-0241**								
VFK3201*									
VFK3202*			0.0	7.4	4.40		050	450	075
VFK4201*		3	0.3	74	148		250	150	275
VFK3403	1								
VFK4401	1								

NOTE

VARIDYNE 2 sizes 2, 3 and 4 drives include DC chokes, AC reactors are only required for harmonic reduction.

sales@skot.co.uk

They can be ordered using the above part numbers or Skot reference numbers:

4400-0240 = 35232

4400-0241 = 35233

7.1 Line reactors

Input line reactors reduce the risk of damage to the drive resulting from poor phase balance or severe disturbances on the supply network.

Where line reactors are to be used, reactance values of approximately 2% are recommended. Higher values may be used if necessary, but may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

For all drive ratings, 2% line reactors permit drives to be used with a supply imbalance of up to 3.5% negative phase sequence (equivalent to 5% voltage imbalance between phases).

Severe disturbances may be caused by the following factors, for example:

^{*} The reactance values will be higher than 2% with these drives, which may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

^{**} These input reactors are not stocked by USEM. Therefore they should be ordered directly from the manufacturer, Skot Transformers, or sourced locally.

I	Technical	Derating curves		DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Options
	data	and losses	levels	design	installation	Livio	reactors	lengths	data	specification	types	Optiono

- Power factor correction equipment connected close to the drive.
- Large DC drives having no or inadequate line reactors connected to the supply.
- Direct-on-line started motor(s) connected to the supply such that when any of these motors are started, the voltage dip exceeds 20%.

Such disturbances may cause excessive peak currents to flow in the input power circuit of the drive. This may cause nuisance tripping, or in extreme cases, failure of the drive.

Drives of low power rating may also be susceptible to disturbance when connected to supplies with a high rated capacity.

Model sizes VFK2201 to VFK4606 have an internal DC choke and VFK5401 to VFK6602 have internal AC line chokes, so they do not require AC line reactors except for cases of excessive phase unbalance or extreme supply conditions.

When required, each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

NOTE

RFI filters (for EMC purposes) do not give adequate protection against these conditions.

7.2 Reactor current ratings

Continuous current:

Not less than the continuous input current rating of the drive.

Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive.

Voltage fluctuation (Flicker) standard EN61000-3-3 (IEC61000-3-3)

Those models that fall within the scope of EN61000-3-3, as stated in the declaration of Conformity, conform to the requirements for manual switching, i.e. the voltage dip caused when a drive at room temperature is switched on is within the permitted limits.

The drive does not of itself cause periodic voltage fluctuation in normal operation. The installer must ensure that the control of the drive is such that periodic fluctuations in supply current do not infringe the flicker requirements where applicable. Note that large periodic load fluctuations in the frequency range of between 1Hz and 30Hz are particularly inclined to cause irritating lighting flicker and are subject to stringent limits under EN61000-3-3.

7.3 Input line reactors for harmonics standards EN61000-3-2 and IEC61000-3-2

The following input line reactors allow the VARIDYNE 2 0.25 - 0.55kW drives to conform to harmonic standards EN61000-3-2 and IEC61000-3-2.

Table 7-2 Input line reactors for harmonics standards EN61000-3-2 and IEC61000-3-2

Drive	Reactor part	Drive power de-rating	Input power	Inductance	Continuous rms current	
		uo rumiy	W	mH		
VFKA12200025	4400-0239	None	374	4.5	2.4	
VFKA12200037	4400-0238	None	553	9.75	3.2	
VFKA12200055	4400-0237	18%	715	16.25	4.5	

EN61000-3-2 and IEC61000-3-2 applies to equipment with a supply voltage of 230VAC and a line current up to 16A, single or three phase. Professional equipment with rated input power exceeding 1kW has no limits - this applies to the 0.75kW drive.

Further information on EN61000-3-2 and IEC61000-3-2 is included on the EMC data sheets available from your local drive centre or distributor.

Figure 7-1 Input line reactor 4402-0224, 4402-0225 and 4402-0226

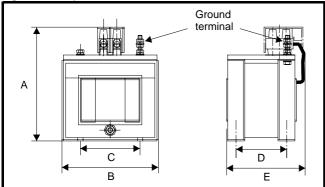


Table 7-3 Dimensions

Part No		Dimensions							
T art No	Α	В	С	D	Е	Fixing hole	terminal		
4402-0224	90mm (3.54in)	72mm (2.84in)	44.5mm (1.75in)	35mm (1.38in)	65mm (2.56in)	9mm v 4mm	M3		
4402-0225	100mm (3.94in)	82mm (3.23in)	54mm (2.13in)	40mm (1.58in)	75mm (2.95in)	8mm x 4mm (0.32in x 0.16in)			
4402-0226	105mm (4.13in)	0211111 (3.2311)	3411111 (2.1311)	53mm (2.09in)	90mm (3.54in)	(0.02 x 0.10)			

Technical	Derating curves	Drive voltage	DC bus	Mechanical	LMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

Figure 7-2 Input line reactor 4402-0227, 4402-0228, 4402-0229

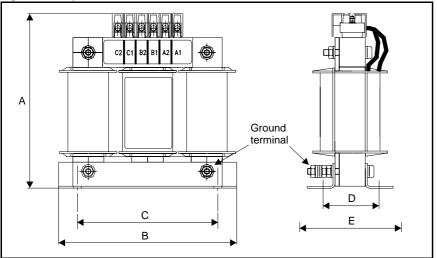


Table 7-4 Dimensions

Part No			Ground				
raitino	Α	В	С	D	Е	Fixing slot	terminal
4402-0227						47	
4402-0228	150mm (5.91in)	150mm (5.91in)	120mm (4.72in)	47mm (1.85in)	90mm (3.54in)	17mm x 7 mm (0.67in x 0.28in)	M5
4402-0229						(0.07111 x 0.2011)	

7.3.1 Input Inductor calculation

To calculate the inductance required (at Y%), use the following equation:

$$L \,=\, \frac{Y}{100} \times \frac{V}{\sqrt{3}} \times \frac{1}{2\pi f I}$$

Where:

I = drive rated input current (A)

L = inductance (H)

f = supply frequency (Hz)

V = voltage between lines

87 VARIDYNE 2 Technical Data www.usmotors.com

Technical Derating curves Drive voltage DC bus Mechanical AC line I/O Supply General Motor cable **EMC** Options and losses design installation reactors lengths specification data levels data types

Motor cable lengths 8

VARIDYNE 2 size A to C 8.1

Table 8-1 Motor cable lengths

Drive frame size	kW rating	Maximum motor cable length
А	0.25 and 0.37	50m
^	0.55 and 0.75	75m
В		100m
С		100m

The capacitive loading of the drive by the motor cable means that the cable length limits shown in table 8-1 must be observed. Failure to do so can result in spurious OI.AC tripping of the drive. If longer cable lengths are required, consult your local Drive Centre or Distributor.

The maximum cable lengths were measured using cable with capacitance of 130pF/m.

This capacitance was measured by taking one phase as one node and the screen (shield) and earth (ground) (if any) as the other node, then measuring the capacitance between the two points.

8.2 VARIDYNE 2 size 2 to 6

Table 8-2 Maximum motor cable lengths (200V drives)

	200V Nominal A	C supply voltage	-				
Model	Maximum permissible motor cable length for each of The following frequencies						
	3kHz	6kHz	12kHz				
VFK2201							
VFK2202		100m (330ft)	50m (165ft)				
VFK2203	200m (660ft)						
VFK3201							
VFK3202							
VFK4201							
VFK4202	250m (820ft)	125m (410ft)					
VFK4203							

Table 8-3 Maximum motor cable lengths (400V drives)

	400V Nominal AC supply voltage							
Model	Maximum permissible motor cable length for each of The following frequencies							
	3kHz	12kHz						
VFK2401								
VFK2402								
VFK2403	1							
VFK2404	200m (660ft)	100m (330ft)	50m (165ft)					
VFK3401								
VFK3402								
VFK3403								
VFK4401								
VFK4402]							
VFK4403								
VFK5401	250m (820ft)	125m (410ft)						
VFK5402]							
VFK6401								
VFK6402								

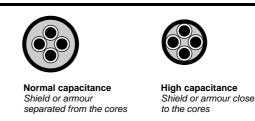
Table 8-4 Maximum motor cable lengths (575V drives)

	575V Nominal AC supply voltage							
	Maximum permiss	ible motor cable l	ength for each of					
Model	The following frequencies							
	3kHz	6kHz	12kHz					
VFK3501								
VFK3502	1							
VFK3503	1							
VFK3504	200m (660ft)	100m (330ft)						
VFK3505								
VFK3506	1							
VFK3507	1							

Table 8-5 Maximum motor cable lengths (690V drives)

	690V Nominal AC	supply voltage					
	Maximum permissi	ble motor cable ler	gth for each of				
Model	The following frequencies						
	3kHz	6kHz	12kHz				
VFK4601							
VFK4602							
VFK4603							
VFK4604							
VFK4605	250m (820ft)	125m (410ft)					
VFK4606	230111 (02011)	123111 (41011)					
VFK5601							
VFK5602							
VFK6601							
VFK6602							

- Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the
- The default switching frequency is 3kHz.


High-capacitance cables

The maximum cable length is reduced from that shown in Table 8-1, Table 8-2, Table 8-3 and Table 8-4 if high capacitance motor cables are

Most cables have an insulating jacket between the cores and the armour or shield; these cables have a low capacitance and are recommended. Cables that do not have an insulating jacket tend to have high

capacitance; if a cable of this type is used, the maximum cable length is half that quoted in the tables. (Figure 8-1 shows how to identify the two

Figure 8-1 Cable construction influencing the capacitance

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable I/O General Supply **EMC** Options and losses levels design installation reactors lengths data specification types data

9 General data

9.1 Ratings

9.1.1 IP rating

All sizes

IP20

The drive complies with the requirements of IP20 as standard.

Size A to C

IP4X

 The top surface of the drive complies with the requirements of IP4X when the drive is mounted vertically with the optional top cover fitted.

Size 2 to 6

IP54

 The drive can achieve IP54 rating (NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required).

First digit: Protection against contact and ingress of foreign bodies.

- **2** Protection against medium size foreign bodies \emptyset > 12mm (e.g. finger)
- **4** Protected against solid objects over 1mm (e.g. tools, wires and small wires)
- **5** Protection against dust deposit, complete protection against accidental contact

Second digit: Protection against ingress of water.

- 0 No protection
- 4 Protection against splash water (from all directions)
- X Not tested

9.2 Input phase imbalance

3% between phases or 2% negative phase sequence.

9.3 Ambient temperature

Size A to C:

-10°C (14°F) to 40°C (104°F) at 3kHz

Operation up to 55°C (131°F) with de-rating. (see de-rating curves for further information)

Size 2 to 6:

Ambient temperature operating range:

0°C to 50°C (32°F to 122°F).

Output current derating must be applied at ambient temperatures >40°C (104°F).

Minimum temperature at power-up:

-15°C (5°F), the supply must be cycled when the drive has warmed up to 0°C (32°F).

Cooling method: Forced convection

NOTE

The drive can be powered up and run at a minimum temperature of -10°C (14°F).

9.4 Storage temperature

Size A to C:

-40 to +60°C (-40 to +140°F) for 12 months max

Size 2 to 6:

-40 (-40°F) to +50°C (122°F) for long term storage, or to +70°C (158°F) for short term storage.

9.5 Altitude

Size A to C:

Rated altitude: 1000m (3250 ft)

Reduce the normal full load current by 1% for every 100m (325 ft) above 1000m (3250 ft) up to a maximum of 3000m (9750 ft).

Size 2 to 6:

Altitude range: 0 to 3,000m (9,900 ft), subject to the following conditions: 1,000m to 3,000m (3,300 ft to 9,900 ft) above sea level: de-rate the maximum output current from the specified figure by 1% per 100m (330 ft) above 1,000m (3,300 ft)

For example at 3,000m (9,900ft) the output current of the drive would have to be de-rated by 20%.

9.6 Humidity

Maximum relative humidity 95% non-condensing at 40°C (104°F).

9.7 Storage humidity

Maximum relative humidity 93%, 40°C, 4 days.

9.8 Pollution degree

Designed for operation in Pollution degree 2 environments (dry, nonconductive contamination only)

9.9 Materials

Flammability rating of main enclosure: UL94 - 5VA

9.10 Vibration

9.10.1 Random

Standard: In accordance with IEC68-2-64 and IEC68-2-36: Test Fh Severity: $1.0~\text{m}^2/\text{s}^3~(0.01\text{g}^2/\text{Hz})$ ASD from 5 to 20Hz, -3dB/octave

from 20 to 200Hz

Duration: 30 minutes in each of 3 mutually perpendicular axes.

9.10.2 Sinusiodal

Standard: IEC68-2-6: Test Fc Frequency range: 2 to 500Hz

Severity: 3.5mm peak displacement from 2 to 9Hz

10m/s² peak displacement from 9 to 200Hz 15m/s² peak displacement from 200 to 500Hz

Sweep rate: 1 octave/minute

Duration: 15 minutes in each of 3 mutually perpendicular

axes.

9.10.3 Bump

Standard: IEC68-2-29: Test Eb Severity: 18g, 6ms, half sine

Number of bumps: 600 (100 in each direction of axes)

9.11 Frequency accuracy

0.01%

9.12 Resolution

0.1Hz

9.13 Output frequency range

0 to 1500Hz

1	Technical	Derating curves	Drive voltage	DC bus	Mechanical	LMC	AC line	Motor cable	General	I/O	Supply	Ontions
	data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

9.14 Starts per hour

Electric starts

With the supply permanently connected the number of electronic motor starts per hour is only limited by motor and drive thermal limits.

Power starts

The number of starts by connection of the ac supply is limited. The start up circuit will allow for three consecutive starts at 3-second intervals on initial power up. Exceeding the rated number of starts per hour, presented in the table below, could result in damage to the start up circuit.

Drive frame size	Maximum AC line starts per hour evenly spaced in time
A, B, C and 2 to 6	20

9.15 Start-up time

The soft-start circuit must charge the dc bus and SMPS outputs and stabilise to allow the control processor to start operation in the following times:-

Drive frame size	Voltage	Maximum time taken to charge DC bus and SMPS outputs to stabilise
Α	200	1s
B and C	200	2s
B and C	400	1s
2 to 6	All	4s

9.16 Serial communications

Modbus RTU

9.17 Switching frequencies

The software allows for the following switching frequencies:

Drive size	Voltage rating	3kHz	6kHz	12kHz	18kHz
A, B & C	200	V	V	V	1
B&C	400	V	V	√	
2	All	√	√	√	
	VFK320X	√	√	√	
3	VFK3401 & VFK3402	V	V	√	
	VFK3403	√	√	√	
	VFK350X	√	√		
4	All	V	V		
5	All	√	V		
6	All	V	1		

NOTE

With drive firmware V01.07.01 onwards, the size C 400V drive will have an actual switching frequency of 3kHz when the output frequency is below 6Hz.

9.18 **Harmonics**

The VARIDYNE 2 industrial AC variable speed drives are classified as class A professional equipment as defined in BS EN61000-3-2: 1995. Drives with input power equal to or below 1kW that do not meet the requirements of EN61000-3-2 are to be corrected, to ensure compliance, at the point of installation using suitable AC line chokes. See 7.2 (Reactor current ratings)

Acoustic noise 9.19

Frame	Power ratings	Condition	Max SPL measurement (dBA)
Α	All ratings	N/A	None contributed by drive (no fan)
В	≤0.75kW	N/A	None contributed by drive (no fan)
В	≥1.1kW	rd mode, fan on	50
С	All ratings	rd mode, fan on	53

Size	Max speed dBA	Min speed dBA
2	54	35
3	56	43
4		
5		
6		

Derating curves and losses DC bus Supply types Technical Drive voltage Mechanical AC line Motor cable General I/O specification **EMC** Options data levels installation reactors lengths data

10 I/O specification

The control circuits are isolated from the power circuits in the drive by basic insulation (single insulation) only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation (supplementary insulation) rated for use at the AC supply voltage.

If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to personal computer), an additional isolating barrier must be included in order to maintain the SELV classification.

T1 0V common

T2 Analogue input 1	(A1), either voltage or current
Voltage: Current input	0 to 10V: mA as parameter range
Parameter range	4-20, 20-4, 0-20, 20-0, 420, 204, Volt
Scaling	Input range automatically scaled to Pr 01 (<i>Minimum set speed</i>) to Pr 02 (<i>Maximum set speed</i>)
Input impedance	200Ω (current): 100kΩ (voltage)
Resolution	0.1%
Accuracy	± 2%
Sample time	6ms
Absolute maximum voltage range	+35V to -18V with respect to 0V common

Т3	+10V reference output		
Maximum outpu	ut current	5mA	
Protection		Tolerates continuous short circuit to 0V	
Accuracy		± 2%	

T4 Analogue input 2 (A	Analogue input 2 (A2), either voltage or digital input		
Voltage: Digital input	0 to +10V: 0 to +24V		
Scaling (as voltage input)	Input range automatically scaled to Pr 01 Minimum set speed / Pr 02 Maximum set speed		
Input impedance	100kΩ (voltage): 6k8 (digital input)		
Resolution	0.1%		
Accuracy	± 2%		
Sample time	6ms		
Nominal threshold voltage	+10V (positive logic only)		
Absolute maximum voltage range	+35V to -18V with respect to 0V common		

T5 T6	Status relay - Drive healthy (Normally open)			
Contact voltage rating		240Vac 30Vdc		
Contact maximum current rating		2Aac 240V 4Adc 30V resistive load (2A 35Vdc for UL requirements) 0.3Adc 30V inductive load (L/R = 40ms)		
Contact minimum recommended rating		12V 100mA		
Contact isolation		1.5kVac (over voltage category II)		
Update time		1.5ms		
Operation of contact		OPEN - AC supply removed from drive AC supply applied to drive with drive in tripped condition. CLOSED - AC supply applied to drive with drive in a 'ready to run' or 'running' condition (not tripped)		

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

Provide fuse or other over-current protection in status relay circuit.

B1 A	Analogue voltage output - Motor speed		
Voltage output		0 to +10V	
Scaling		0V represents 0Hz/rpm output +10V represents the value in Pr 02, maximum set speed	
Maximum output current		5mA	
Resolution		0.1%	
Accuracy		± 5%	
Update time		6ms	
Protection		Tolerates continuous short circuit to 0V	

B2	+24V output	
Maximum outp	out current	100mA
Protection		Tolerates continuous short circuit to 0V
Accuracy		± 15%

В3	Digital output - Zero speed		
Voltage range		0 to +24V	
Maximum output current		50mA at +24V (current source)	
Output impedance		6.8kΩ	
Update time		1.5ms	
Absolute maximum voltage range		+35V to -1V with respect to 0V common	

The total available current from the digital output plus the +24V output is 100mA

B4 B5 B6 B7	Digital Input - Run Fo	Digital Input - Enable/Reset */** Digital Input - Run Forward ** Digital Input - Run Reverse ** Digital Input - Local/Remote speed reference select (A1/A2)					
Logic		Positive logic only					
Voltage range		0 to +24V					
Input impedance		6.8kΩ					
Sample time		1.5ms					
Nominal threshold voltage		+10V					
Absolute maximu	ım voltage range	+35V to -18V with respect to 0V common					

If the drives enable terminal is opened, the drives output is disabled and the motor will coast to a stop. The drive will not re-enable for 1s after the enable terminal is closed again.

10.1 **Drive reset**

*Following a drive trip, opening and closing the enable terminal will reset the drive. If the run forward or run reverse terminal is closed, the drive

**Following a drive trip and a reset via the stop/reset key, the enable, run forward or run reverse terminals will need to be opened and closed to allow the drive to run. This ensures that the drive does not run when the stop/reset key is pressed.

The enable, run forward and run reverse terminals are level triggered apart from after a trip where they become edge triggered. See * and **

If the enable and run forward or enable and run reverse terminals are closed when the drive is powered up, the drive will run straight away up to a set speed.

If both the run forward and run reverse terminals are closed, the drive will stop under the control of the ramp and stopping modes set in Pr 30 and Pr 31.

10.2 Sample/update times

The sample/update times shown in the control terminal specification within the VARIDYNE 2 Technical Guide are the default sample/update times for the default terminal set-up. The sample/update time depends on the destination/source parameter of the digital or analogue inputs/ outputs.

These sample/update times are the sample or update times for the control microprocessor. The actual sample/update time maybe slightly longer due to the design of the VARIDYNE 2.

92 VARIDYNE 2 Technical Data www.usmotors.com

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EMC	reactors	lengths	data	specification	types	Options

10.3 Task routine times

At the beginning of each menu, there is a single line parameter description and this contains the update rate for each parameter. This time signifies the task routine time in the software that the parameter is $% \frac{1}{2}\left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}$ updated on. For a background task, the time depends on processor loading i.e. what functions the drive is carrying out and what advanced menus are being used.

Update rate	Microprocessor update time	Comments
2ms	2ms	Updated every 2ms
5ms	5ms	Updated every 5ms
21ms	21ms	Updated every 21ms
128ms	128ms	Updated every 128ms
Reset	N/A	Destination/source parameter changed on a Reset
В	Background	Undeted on a heaterway took Undete rate depends
BR	Background read	Updated as a background task. Update rate depends on processor loading.
BW	Background write	on processor loading.

From practical tests carried out:

Condition	Minimum ms	Maximum ms	Average ms
Time for drive to respond to a run command	4.1	5.62	5.02
Time for the drive to respond to a stop command	2.82	3.94	3.31
Time for the drive to respond to a step change in analogue input voltage			7.93

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O Supply types FMC. Options and losses design installation reactors lengths data specification data levels

11 Supply types

Drives rated for supply voltages up to 575V are suitable for use with any supply type, i.e. TN-S, TN-C-S, TT, IT, with grounding at any potential, i.e. neutral, centre or corner ("grounded-delta").

Grounded delta supplies >575V are not permitted.

Drives are suitable for use on supplies of installation category III and lower, according to IEC60664-1. This means they maybe connected permanently to the supply at its origin in a building, but for outdoor installation additional over-voltage suppression (transient voltage surge suppression) must be provided to reduce category IV to category III.

Operation with IT (ungrounded) supplies:

Special attention is required when using internal or external EMC filters with ungrounded supplies, because in the event of a ground (earth) fault in the motor circuit, the drive may not trip and the filter could be over-stressed. In this case, either the filter must not be used (removed) or additional independent motor ground fault protection must be provided. Refer to Table 11-1.

For instructions on removal, refer to Menu 4 in the VARIDYNE 2 size 2 to 6 Getting Started Guide. For details of ground fault protection contact the supplier of

A ground fault in the supply has no effect in any case. If the motor must continue to run with a ground fault in its own circuit, then an inputisolating transformer must be provided and if an EMC filter is required it must be located in the primary circuit.

Unusual hazards can occur on ungrounded supplies with more than one source, for example on ships. Contact the supplier of the drive for more information.

Table 11-1 Behaviour of the drive in the event of a motor circuit ground (earth) fault with an IT supply

Drive size	Internal filter only	External filter (with internal)
2	Drive trips on fault	Drive trips on fault
3	May not trip – precautions required	Drive trips on fault
4 to 6	May not trip – precautions required	May not trip – precautions required

11.1 **AC** supply requirements

Single phase drives

Single phase - Between one phase and neutral of a star connected three phase supply.

- Between two phases of a three phase supply.

Three phase models

Three-phase star or delta supply of the correct voltage.

Dual rated models

Any of the above supplies can be used.

11.2 Safety

Electric shock risk

The voltages present in the following locations can cause severe electric shock and may be lethal:

- AC supply cables and connections
- DC and brake cables and connections
- Output cables and connections
- Many internal parts of the drive, and external option units

Unless otherwise indicated, control terminals are single insulated and must not be touched.

Isolation device

The AC supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

STOP function

The STOP function does not remove dangerous voltages from the drive, the motor or any external option units.

Stored charge

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult USEM or their authorized distributor.

Equipment supplied by plug and socket

Special attention must be given if the drive is installed in equipment which is connected to the AC supply by a plug and socket. The AC supply terminals of the drive are connected to the internal capacitors through rectifier diodes which are not intended to give safety isolation. If the plug terminals can be touched when the plug is disconnected from the socket, a means of automatically isolating the plug from the drive must be used (e.g. a latching relay).

11.3 Cables

Recommended cable sizes are given in Chapter 1 Technical data on page 5. They are only a guide; refer to local wiring regulations for correct size of cables. In some cases, a larger cable size is required to avoid excessive voltage drop.

Use 105°C (221°F) (UL 60/75°C temp rise) PVC-insulated cable with copper conductors having a suitable voltage rating, for the following power connectors:

- AC supply to external EMC filter (when used)
- AC supply (or external EMC filter) to drive
- Drive to motor
- Drive to braking resistor

Motor cables

The recommended output cable sizes assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used, the cable rating may be chosen to match that of the motor. To

94 VARIDYNE 2 Technical Data Issue Number: 5 www.usmotors.com

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General FMC. Options data and losses levels design installation reactors lengths data specification

ensure that the motor and cable are protected against overload, the drive must be programmed with the correct motor rated current.

11.4 **Fuses**

The AC supply to the drive must be fitted with suitable protection against overload and short circuits. Chapter 1 Technical data on page 5 shows the recommended fuse ratings. Failure to observe this requirement will cause risk of fire.

A fuse or other protection device must be included in all live connectors to the AC supply.

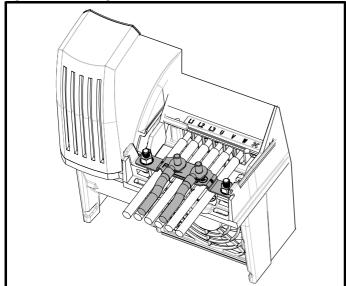
An MCB (miniature circuit breaker) or MCCB (moulded case circuit breaker) with type C tripping characteristics maybe used in place of fuses as long as the fault clearing capacity is sufficient for the installation. On VARIDYNE 2 sizes 2 and 3 an MCB/MCCB of type C maybe used in place of fuses under the following conditions:

- The fault-clearing capacity must be sufficient for the installation.
- The drive must be mounted in an enclosure which meets the requirements for a fire enclosure.

Fuse types

Europe: Type gG HRC fuses complying with EN60269 parts 1 and 2 (BS88)

USA: Bussman Limitron KTK series, class CC fast acting fuses up to 30A, class J above 30A.


11.5 **Ground connections**

The drive must be connected to the system ground of the AC supply. The ground wiring must conform to local regulations and codes of practice.

The ground loop impedance must conform to the requirements of local safety regulations. The ground connections must be inspected and tested at appropriate intervals.

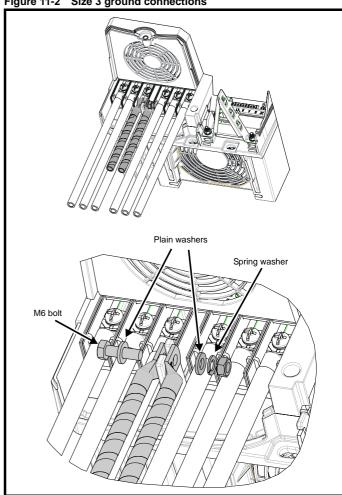

On VARIDYNE 2 size 2, the supply and motor ground connections are made using the grounding bridge that locates at the bottom of the drive.

Figure 11-1 Size 2 ground connections

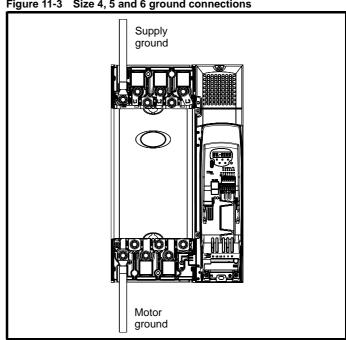

On VARIDYNE 2 size 3, the supply and motor ground connections are made using an M6 nut and bolt that locates in the fork protruding from the heatsink between the AC supply and motor output terminals.

Figure 11-2 Size 3 ground connections

On VARIDYNE 2 size 4, 5 and 6, the supply and motor ground connections are made using an M10 bolt at the top (supply) and bottom (motor) of the drive.

Figure 11-3 Size 4, 5 and 6 ground connections

Technical Derating curves Drive voltage DC bus Mechanical AC line Motor cable General I/O Supply types FMC. Options and losses installation reactors lengths data specification data levels design

The supply and motor ground connections to the drive are connected internally by a copper conductor with a cross-sectional area given below:

size 4: 19.2mm2 (0.03in², or slightly bigger than 6 AWG)

size 5: 60mm2 (0.09in², or slightly bigger than 1 AWG)

size 6: 75mm2 (0.12in², or slightly bigger than 2/0 AWG)

This connection is sufficient to provide the ground (equipotential bonding) connection for the motor circuit under the following conditions:

To standard	Conditions
	Supply phase conductors having cross-sectional area not exceeding:
IEC 60204-1 & EN 60204-1	size 4: 38.4mm ²
EN 60204-1	size 5: 120mm ²
	size 6: 150mm ²
NFPA 79	Supply protection device rating not exceeding: size 4: 200A size 5: 600A size 6: 1000A

If the necessary conditions are not met, an additional ground connection must be provided to link the motor circuit ground and the supply ground.

Use of RCDs - residual current device

There are three common types of RCD/ELCB

Type AC - detects AC fault currents

Type A - detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)

Type B - detects AC, pulsating DC, and smooth DC fault currents

- Type AC should never be used with inverter drives
- Type A can only be used with single phase drives
- · Type B must be used with three phase drives.

It is recommended that only Type B RCDs be used with inverter drives

If an external EMC filter is used, a delay of at least 50ms should be incorporated in the RCD to ensure spurious trips are not seen. The leakage current is likely to exceed the trip level if all of the phases are not energised simultaneously.

11.6 Ground leakage

The ground leakage current depends upon the internal EMC filter is fitted. The drive is supplied with the filter fitted. Instructions for removal of the internal EMC filter are given in the VARIDYNE 2 Getting Started Guide.

With internal EMC filter fitted

Size A

10mA AC at 230V, 50Hz (proportional to supply voltage and frequency)

Size B and C

1 phase 200V product

20mA AC at 230V, 50Hz (proportional to supply voltage and frequency)

3-phase 200V product

7mA AC at 230V, 50Hz (proportional to supply voltage and frequency)

3-phase 400V product

8.2mA AC at 415V, 50Hz (proportional to supply voltage and frequency) $30\mu A$ DC (10 $\Omega)$

Size 2 to 6

10μA DC (10M Ω internal bleed resistor)

NOTE

The above leakage currents are just the leakage currents of the drive with the internal EMC filter connected and do not take into account any leakage currents of the motor or motor cable.

With internal EMC filter removed

<1mA

NOTE

In both cases, there is an internal voltage surge suppression device connected to ground. Under normal circumstances, this carries negligible current.

When the internal EMC filter is fitted, the leakage current is high. In this case, a permanent fixed ground connection must be provided using two independent conductors each with a cross-section equal to or exceeding that of the supply conductors. The drive is provided with two earth terminals to facilitate this. The purpose is to prevent a safety hazard occurring if the connection is lost.

Technical	Derating curves	Drive voltage	DC bus	Mechanical	EMC	AC line	Motor cable	General	I/O	Supply	Ontions
data	and losses	levels	design	installation	EIVIC	reactors	lengths	data	specification	types	Options

12 Options

All VARIDYNE 2 Solutions Modules are colour-coded, in order to make identification easy. The following table shows the colour-code key and gives further details on their function.

Туре	Option	Colour	Name	Further details	Minimum option firmware version	Unidrive SP compatible ?
		Purple	SM-PROFIBUS-DP	PROFIBUS-DP option PROFIBUS-DP adapter for communication with VARIDYNE 2	03.00.00	Yes
		Medium Grey	SM-DeviceNet	DeviceNet option DeviceNet adapter for communication with VARIDYNE 2	03.00.00	Yes
Fieldbus*		Dark Grey	SM-INTERBUS	INTERBUS option INTERBUS adapter for communication with VARIDYNE 2	03.00.00	Yes
		Light Grey	SM-CANopen	CANopen option CANopen adapter for communication with VARIDYNE 2	03.00.00	Yes
		Beige	SM-Ethernet	Ethernet option Ethernet adapter for communication with VARIDYNE 2	01.00.00	Yes
		Dark Yellow	SM-I/O Lite	I/O Lite option Increases the I/O capability by adding the following to the existing I/O in the drive: • ±10V bi-polar / 4-20mA analogue input • 1.0-10V / 4-20mA analogue output • Digital inputs x 3 • Encoder speed reference input (A, /A, B, /B) • Relay x 1	01.01.07	Yes
		Dark Red	SM-I/O Timer	Timer I/O option Same features is I/O Lite, but with the addition of a battery backed-up real time clock.	01.01.07	Yes
Extended IO*		Olive	SM-I/O 120V	Additional I/O conforming to IEC 1131-2 120Vac 6 digital inputs and 2 relay outputs rated for 120Vac operation	01.00.01	Yes
		Turquoise	SM-I/O PELV	Isolated I/O to NAMUR NE37 specifications For chemical industry applications 1 x Analogue input (current modes) 2 x Analogue outputs (current modes) 4 x Digital input / outputs, 1 x Digital input, 2 x Relay outputs	03.01.03	Yes
		Cobalt Blue	SM-I/O 24V Protected	Additional I/O with overvoltage protection up to 48V 2 x Analogue outputs (current modes) 4 x Digital input / outputs, 3 x Digital inputs, 1 x Relay output	03.01.03	Yes

Technical Derating data and lo	curves Drive volta	age DC busings		AC line Rotor cable General I/C reactors lengths data specific		Options
Туре	Option	Colour	Name	Further details	Minimum option firmware version	Unidrive SP compatible ?
		Black	SmartStick	SmartStick option Upload drive parameters to the SmartStick for storage or for easy set-up of identical drives or downloading to replacement drives		No
Automation		White	LogicStick	LogicStick option The LogicStick plugs into the front of the drive and enables the user to program PLC functions within the drive. (The LogicStick can also be used as a SmartStick)		No
Keypad	000		SM-Keypad Plus	LCD keypad display option Remote panel mounting LCD multilingual text keypad display to IP54 (NEMA 12) with additional help key	04.03.01	Yes
кеурац	***************************************		Keypad Remote	LED keypad display option Remote panel mounting LED display to IP65 (NEMA 12) with additional function key	01.00.00	No
			EMC Filters	These additional filters are designed to operate together with the drive's own integral EMC filter in areas of sensitive equipment		No
EMC			AC input line reactors	To reduce supply harmonics		No
	The Paris of the P		Bracket	Cable management bracket		No
Cable management**			UL type 1 kit	Bottom metal gland plate, top cover and side covers to allow the drive to comply with the requirements of UL type 1		No
Cover kit**			Cover kit	The additional cover kit will increase the environmental protection of the top face to IP4X in vertical direction.		No
	12 m/m 12		CT Comms cable	Cable with isolation RS232 to RS485 converter. For connecting PC/Laptop to the drive when using CTSoft or SyPTLite		Yes
Communications			CTSoft	Software for PC or Laptop which allows the user to commission and store parameter settings	01.04.01	Yes
	FREE S@ftware		SyPTLite	Software for PC or Laptop which allows the user to program PLC functions within the drive	01.02.02	Yes
Braking resistor			Braking resistor	Optional internal braking resistor for VARIDYNE 2 size 2		Yes

^{*}Not compatible with size A

^{**} Not available for size 2 to 6.

0472-0101-05